A Preconditioned Algorithm for Turbomachinery Viscous Flow Simulation

A Preconditioned Algorithm for Turbomachinery Viscous Flow Simulation PDF Author: Xiao Wang
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages :

Get Book Here

Book Description
The MSU TURBO code, distributed to U.S. engine companies by NASA Glenn, is a heavily used parallel compressible Reynolds-averaged Navier-Stokes flow solver for multistage turbomachinery flows, primarily for compressible flows at subsonic and transonic speeds. Many low speed turbomachinery flows in aerial vehicles or marine propulsion systems can not be effectively addressed by compressible flow solvers. It is well known that compressible flow equations face difficulties at low Mach number due to the large disparity of the acoustic and convective wave speeds. The current study is to develop and implement the computational capability for flow simulations at low Mach number, or incompressible Mach regime, under the framework of the MSU TURBO code. This is accomplished by applying a global preconditioning scheme to the unsteady term of the compressible governing equations and solving the conservative Riemann flux based on primitive variables. The preconditioning scheme is a single parameter diagonal matrix depending on a reference Mach number which represents the global flow properties in the flow simulation. For flows in rotating machines where speed varies along the radial direction from the axis of the rotation, it is found that a modified preconditioning parameter is necessary to assure numerical stability in simulating low Mach number rotating flows. The effectiveness of the modified preconditioning scheme has been analyzed, under various flow conditions, through Fourier footprints and validated by numerical investigations. The development of a preconditioned structured turbomachinery flow solver was accomplished in this dissertation. The conservative form of the governing equations were cast in the non-inertial relative rotating frame in terms of primitive variables and absolute velocity vectors. Characteristic-based boundary conditions, with implicit treatment of the source term resulting from the rotating relative frame, are derived for internal and external flows. The implicit finite volume scheme is developed for the preconditioned scheme with the flux Jacobians evaluated by either a flux approximate method or flux-vector-splitting. The viscous flux is also treated implicitly, and an analytic form of viscous flux Jacobians was developed in the preconditioned flow solver to reduce numerical uncertainties, and computing time. A series of flow simulations have been carried out by this preconditioned unsteady turbomachinery flow solver. The simulations of viscous boundary layer development over flat plates at very low Mach numbers demonstrate the effectiveness of the preconditioning algorithm. Computations of compressor rotor, and rotor/stator at subsonic, and transonic flow regions with acceptable results indicate that the preconditioned TURBO solver is compatible with the compressible version of the TURBO solver for subsonic and transonic flows. Moderate improvement in numerical convergence for flows in a rotating frame with mixed flow speeds is observed in the case of a tiltrotor blade at hover. The marine propeller simulation demonstrates the accomplishment of the preconditioned TURBO solver for an incompressible flow simulation. In the simulation of a low speed centrifugal compressor, the preconditioned TURBO is able to predicate the wake locations accurately.

A Preconditioned Algorithm for Turbomachinery Viscous Flow Simulation

A Preconditioned Algorithm for Turbomachinery Viscous Flow Simulation PDF Author: Xiao Wang
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages :

Get Book Here

Book Description
The MSU TURBO code, distributed to U.S. engine companies by NASA Glenn, is a heavily used parallel compressible Reynolds-averaged Navier-Stokes flow solver for multistage turbomachinery flows, primarily for compressible flows at subsonic and transonic speeds. Many low speed turbomachinery flows in aerial vehicles or marine propulsion systems can not be effectively addressed by compressible flow solvers. It is well known that compressible flow equations face difficulties at low Mach number due to the large disparity of the acoustic and convective wave speeds. The current study is to develop and implement the computational capability for flow simulations at low Mach number, or incompressible Mach regime, under the framework of the MSU TURBO code. This is accomplished by applying a global preconditioning scheme to the unsteady term of the compressible governing equations and solving the conservative Riemann flux based on primitive variables. The preconditioning scheme is a single parameter diagonal matrix depending on a reference Mach number which represents the global flow properties in the flow simulation. For flows in rotating machines where speed varies along the radial direction from the axis of the rotation, it is found that a modified preconditioning parameter is necessary to assure numerical stability in simulating low Mach number rotating flows. The effectiveness of the modified preconditioning scheme has been analyzed, under various flow conditions, through Fourier footprints and validated by numerical investigations. The development of a preconditioned structured turbomachinery flow solver was accomplished in this dissertation. The conservative form of the governing equations were cast in the non-inertial relative rotating frame in terms of primitive variables and absolute velocity vectors. Characteristic-based boundary conditions, with implicit treatment of the source term resulting from the rotating relative frame, are derived for internal and external flows. The implicit finite volume scheme is developed for the preconditioned scheme with the flux Jacobians evaluated by either a flux approximate method or flux-vector-splitting. The viscous flux is also treated implicitly, and an analytic form of viscous flux Jacobians was developed in the preconditioned flow solver to reduce numerical uncertainties, and computing time. A series of flow simulations have been carried out by this preconditioned unsteady turbomachinery flow solver. The simulations of viscous boundary layer development over flat plates at very low Mach numbers demonstrate the effectiveness of the preconditioning algorithm. Computations of compressor rotor, and rotor/stator at subsonic, and transonic flow regions with acceptable results indicate that the preconditioned TURBO solver is compatible with the compressible version of the TURBO solver for subsonic and transonic flows. Moderate improvement in numerical convergence for flows in a rotating frame with mixed flow speeds is observed in the case of a tiltrotor blade at hover. The marine propeller simulation demonstrates the accomplishment of the preconditioned TURBO solver for an incompressible flow simulation. In the simulation of a low speed centrifugal compressor, the preconditioned TURBO is able to predicate the wake locations accurately.

A PRECONDITIONED ALGORITHM FOR TURBOMACHINERY VISCOUS FLOW SIMULATION.

A PRECONDITIONED ALGORITHM FOR TURBOMACHINERY VISCOUS FLOW SIMULATION. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Name: Xiao Wang Date of Degree: December 9, 2005 Institution: Mississippi State University Major Field: Computational Engineering Major Professor: Dr. David L. Whitfield Title of Study: A PRECONDITIONED ALGORITHM FOR TURBOMACHINERY VISCOUS FLOW SIMULATION Pages in Study: 106 Candidate for Degree of Doctor of Philosophy The MSU TURBO code, distributed to U.S. engine companies by NASA Glenn, is a heavily used parallel compressible Reynolds-averaged Navier-Stokes flow solver for multistage turbomachinery flows, primarily for compressible flows at subsonic and transonic speeds. Many low speed turbomachinery flows in aerial vehicles or marine propulsion systems can not be effectively addressed by compressible flow solvers. It is well known that compressible flow equations face difficulties at low Mach number due to the large disparity of the acoustic and convective wave speeds. The current study is to develop and implement the computational capability for flow simulations at low Mach number, or incompressible Mach regime, under the framework of the MSU TURBO code. This is accomplished by applying a global preconditioning scheme to the unsteady term of the compressible governing equations and solving the conservative Riemann flux based on primitive variables. The preconditioning scheme is a single parameter diagonal matrix depending on a reference Mach number which represents the global flow properties in the flow simulation. For flows in rotating machines where speed varies along the radial direction from the axis of the rotation, it is found that a modified preconditioning parameter is necessary to assure numerical stability in simulating low Mach number rotating flows. The effectiveness of the modified preconditioning scheme has been analyzed, under various flow conditions, through Fourier footprints and validated by numerical investigations. The development of a preconditioned structured turbomachinery flow solver was accomplished in this dissertation. The conservativ.

Preconditioning for Numerical Simulation of Low Mach Number Three-dimensional Viscous Turbomachinery Flows

Preconditioning for Numerical Simulation of Low Mach Number Three-dimensional Viscous Turbomachinery Flows PDF Author: Daniel L. Tweedt
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 32

Get Book Here

Book Description


Computational Fluid Dynamics

Computational Fluid Dynamics PDF Author: Hyoung Woo Oh
Publisher: BoD – Books on Demand
ISBN: 9537619591
Category : Computers
Languages : en
Pages : 430

Get Book Here

Book Description
This book is intended to serve as a reference text for advanced scientists and research engineers to solve a variety of fluid flow problems using computational fluid dynamics (CFD). Each chapter arises from a collection of research papers and discussions contributed by the practiced experts in the field of fluid mechanics. This material has encompassed a wide range of CFD applications concerning computational scheme, turbulence modeling and its simulation, multiphase flow modeling, unsteady-flow computation, and industrial applications of CFD.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 548

Get Book Here

Book Description


Paper

Paper PDF Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 448

Get Book Here

Book Description


28th AIAA Fluid Dynamics Conference, 4th AIAA Shear Flow Control Conference

28th AIAA Fluid Dynamics Conference, 4th AIAA Shear Flow Control Conference PDF Author:
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 686

Get Book Here

Book Description


ASME Technical Papers

ASME Technical Papers PDF Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 452

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 456

Get Book Here

Book Description


Computational Fluid Dynamics and Heat Transfer

Computational Fluid Dynamics and Heat Transfer PDF Author: Ryoichi Amano
Publisher: WIT Press
ISBN: 1845641442
Category : Technology & Engineering
Languages : en
Pages : 513

Get Book Here

Book Description
Heat transfer and fluid flow issues are of great significance and this state-of-the-art edited book with reference to new and innovative numerical methods will make a contribution for researchers in academia and research organizations, as well as industrial scientists and college students. The book provides comprehensive chapters on research and developments in emerging topics in computational methods, e.g., the finite volume method, finite element method as well as turbulent flow computational methods. Fundamentals of the numerical methods, comparison of various higher-order schemes for convection-diffusion terms, turbulence modeling, the pressure-velocity coupling, mesh generation and the handling of arbitrary geometries are presented. Results from engineering applications are provided. Chapters have been co-authored by eminent researchers.