Author: Palash B. Pal
Publisher: Cambridge University Press
ISBN: 9781108729116
Category : Science
Languages : en
Pages : 0
Book Description
An algebraic structure consists of a set of elements, with some rule of combining them, or some special property of selected subsets of the entire set. Many algebraic structures, such as vector space and group, come to everyday use of a modern physicist. Catering to the needs of graduate students and researchers in the field of mathematical physics and theoretical physics, this comprehensive and valuable text discusses the essential concepts of algebraic structures such as metric space, group, modular numbers, algebraic integers, field, vector space, Boolean algebra, measure space and Lebesgue integral. Important topics including finite and infinite dimensional vector spaces, finite groups and their representations, unitary groups and their representations and representations of the Lorentz group, homotopy and homology of topological spaces are covered extensively. Rich pedagogy includes various problems interspersed throughout the book for better understanding of concepts.
A Physicist's Introduction to Algebraic Structures
A Physicists Introduction to Algebraic Structures
Author: Palash B. Pal
Publisher: Cambridge University Press
ISBN: 1108492207
Category : Mathematics
Languages : en
Pages : 717
Book Description
Algebraic structures including vector space, groups, topological spaces and more, all covered in one volume, showing the mutual connections.
Publisher: Cambridge University Press
ISBN: 1108492207
Category : Mathematics
Languages : en
Pages : 717
Book Description
Algebraic structures including vector space, groups, topological spaces and more, all covered in one volume, showing the mutual connections.
An Introduction to Algebraic Structures
Author: Joseph Landin
Publisher: Courier Corporation
ISBN: 0486150410
Category : Mathematics
Languages : en
Pages : 275
Book Description
This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.
Publisher: Courier Corporation
ISBN: 0486150410
Category : Mathematics
Languages : en
Pages : 275
Book Description
This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.
The Structures of Mathematical Physics
Author: Steven P. Starkovich
Publisher: Springer Nature
ISBN: 3030734498
Category : Electronic books
Languages : en
Pages :
Book Description
This textbook serves as an introduction to groups, rings, fields, vector and tensor spaces, algebras, topological spaces, differentiable manifolds and Lie groups --- mathematical structures which are foundational to modern theoretical physics. It is aimed primarily at undergraduate students in physics and mathematics with no previous background in these topics. Applications to physics --- such as the metric tensor of special relativity, the symplectic structures associated with Hamilton's equations and the Generalized Stokes's Theorem --- appear at appropriate places in the text. Worked examples, end-of-chapter problems (many with hints and some with answers) and guides to further reading make this an excellent book for self-study. Upon completing this book the reader will be well prepared to delve more deeply into advanced texts and specialized monographs in theoretical physics or mathematics.
Publisher: Springer Nature
ISBN: 3030734498
Category : Electronic books
Languages : en
Pages :
Book Description
This textbook serves as an introduction to groups, rings, fields, vector and tensor spaces, algebras, topological spaces, differentiable manifolds and Lie groups --- mathematical structures which are foundational to modern theoretical physics. It is aimed primarily at undergraduate students in physics and mathematics with no previous background in these topics. Applications to physics --- such as the metric tensor of special relativity, the symplectic structures associated with Hamilton's equations and the Generalized Stokes's Theorem --- appear at appropriate places in the text. Worked examples, end-of-chapter problems (many with hints and some with answers) and guides to further reading make this an excellent book for self-study. Upon completing this book the reader will be well prepared to delve more deeply into advanced texts and specialized monographs in theoretical physics or mathematics.
Introduction to Algebraic and Constructive Quantum Field Theory
Author: John C. Baez
Publisher: Princeton University Press
ISBN: 1400862507
Category : Science
Languages : en
Pages : 310
Book Description
The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinear local functions of both free fields (or Wick products) and interacting fields are established mathematically in a way that is consistent with the basic physical constraints and practice. Among other topics discussed are functional integration, Fourier transforms in Hilbert space, and implementability of canonical transformations. The authors address readers interested in fundamental mathematical physics and who have at least the training of an entering graduate student. A series of lexicons connects the mathematical development with the underlying physical motivation or interpretation. The examples and problems illustrate the theory and relate it to the scientific literature. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400862507
Category : Science
Languages : en
Pages : 310
Book Description
The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinear local functions of both free fields (or Wick products) and interacting fields are established mathematically in a way that is consistent with the basic physical constraints and practice. Among other topics discussed are functional integration, Fourier transforms in Hilbert space, and implementability of canonical transformations. The authors address readers interested in fundamental mathematical physics and who have at least the training of an entering graduate student. A series of lexicons connects the mathematical development with the underlying physical motivation or interpretation. The examples and problems illustrate the theory and relate it to the scientific literature. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Operads in Algebra, Topology and Physics
Author: Martin Markl
Publisher: American Mathematical Soc.
ISBN: 0821843621
Category : Mathematics
Languages : en
Pages : 362
Book Description
Operads are mathematical devices which describe algebraic structures of many varieties and in various categories. From their beginnings in the 1960s, they have developed to encompass such areas as combinatorics, knot theory, moduli spaces, string field theory and deformation quantization.
Publisher: American Mathematical Soc.
ISBN: 0821843621
Category : Mathematics
Languages : en
Pages : 362
Book Description
Operads are mathematical devices which describe algebraic structures of many varieties and in various categories. From their beginnings in the 1960s, they have developed to encompass such areas as combinatorics, knot theory, moduli spaces, string field theory and deformation quantization.
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Logic and Algebraic Structures in Quantum Computing
Author: Jennifer Chubb
Publisher: Cambridge University Press
ISBN: 110703339X
Category : Computers
Languages : en
Pages : 355
Book Description
Experts in the field explore the connections across physics, quantum logic, and quantum computing.
Publisher: Cambridge University Press
ISBN: 110703339X
Category : Computers
Languages : en
Pages : 355
Book Description
Experts in the field explore the connections across physics, quantum logic, and quantum computing.
An Introduction to Geometrical Physics
Author: Aldrovandi Ruben
Publisher: World Scientific
ISBN: 9813146834
Category : Science
Languages : en
Pages : 844
Book Description
This book focuses on the unifying power of the geometrical language in bringing together concepts from many different areas of physics, ranging from classical physics to the theories describing the four fundamental interactions of Nature -- gravitational, electromagnetic, strong nuclear, and weak nuclear. The book provides in a single volume a thorough introduction to topology and differential geometry, as well as many applications to both mathematical and physical problems. It is aimed as an elementary text and is intended for first year graduate students. In addition to the traditional contents of books on special and general relativities, this book discusses also some recent advances such as de Sitter invariant special relativity, teleparallel gravity and their implications in cosmology for those wishing to reach a higher level of understanding.
Publisher: World Scientific
ISBN: 9813146834
Category : Science
Languages : en
Pages : 844
Book Description
This book focuses on the unifying power of the geometrical language in bringing together concepts from many different areas of physics, ranging from classical physics to the theories describing the four fundamental interactions of Nature -- gravitational, electromagnetic, strong nuclear, and weak nuclear. The book provides in a single volume a thorough introduction to topology and differential geometry, as well as many applications to both mathematical and physical problems. It is aimed as an elementary text and is intended for first year graduate students. In addition to the traditional contents of books on special and general relativities, this book discusses also some recent advances such as de Sitter invariant special relativity, teleparallel gravity and their implications in cosmology for those wishing to reach a higher level of understanding.
Algebraic Structure of String Field Theory
Author: Martin Doubek
Publisher: Springer
ISBN: 9783030530549
Category : Science
Languages : en
Pages : 221
Book Description
This book gives a modern presentation of modular operands and their role in string field theory. The authors aim to outline the arguments from the perspective of homotopy algebras and their operadic origin. Part I reviews string field theory from the point of view of homotopy algebras, including A-infinity algebras, loop homotopy (quantum L-infinity) and IBL-infinity algebras governing its structure. Within this framework, the covariant construction of a string field theory naturally emerges as composition of two morphisms of particular odd modular operads. This part is intended primarily for researchers and graduate students who are interested in applications of higher algebraic structures to strings and quantum field theory. Part II contains a comprehensive treatment of the mathematical background on operads and homotopy algebras in a broader context, which should appeal also to mathematicians who are not familiar with string theory.
Publisher: Springer
ISBN: 9783030530549
Category : Science
Languages : en
Pages : 221
Book Description
This book gives a modern presentation of modular operands and their role in string field theory. The authors aim to outline the arguments from the perspective of homotopy algebras and their operadic origin. Part I reviews string field theory from the point of view of homotopy algebras, including A-infinity algebras, loop homotopy (quantum L-infinity) and IBL-infinity algebras governing its structure. Within this framework, the covariant construction of a string field theory naturally emerges as composition of two morphisms of particular odd modular operads. This part is intended primarily for researchers and graduate students who are interested in applications of higher algebraic structures to strings and quantum field theory. Part II contains a comprehensive treatment of the mathematical background on operads and homotopy algebras in a broader context, which should appeal also to mathematicians who are not familiar with string theory.