A New Dynamic Subgrid-scale Model for Large-eddy Simulation of Turbulent Flows

A New Dynamic Subgrid-scale Model for Large-eddy Simulation of Turbulent Flows PDF Author: Won-Wook Kim
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 396

Get Book Here

Book Description

A New Dynamic Subgrid-scale Model for Large-eddy Simulation of Turbulent Flows

A New Dynamic Subgrid-scale Model for Large-eddy Simulation of Turbulent Flows PDF Author: Won-Wook Kim
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 396

Get Book Here

Book Description


Dynamic Subgrid-scale Modeling for Large-eddy Simulation of Turbulent Flows with a Stabilized Finite Element Method

Dynamic Subgrid-scale Modeling for Large-eddy Simulation of Turbulent Flows with a Stabilized Finite Element Method PDF Author: Andres E. Tejada-Martinez
Publisher:
ISBN: 9780493921068
Category :
Languages : en
Pages : 158

Get Book Here

Book Description


Data-driven Dynamic Nonlocal Subgrid-scale Modeling for the Large Eddy Simulation of Turbulent Flows

Data-driven Dynamic Nonlocal Subgrid-scale Modeling for the Large Eddy Simulation of Turbulent Flows PDF Author: Seyedhadi Seyedi
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 0

Get Book Here

Book Description
This study aims to propose novel solutions to the complex problem of turbulent flows using data-driven statistical and mathematical models. The proposed models reduce the huge computational cost of the direct numerical simulations and make them tractable while maintaining the important statistical features of the chaotic flows. Unlike the conventional models in the literature, the new proposed dynamic models take into account the inherent nonlocality of turbulence and predict the final statistical quantities with higher accuracy and correlations. First, we developed a novel autonomously dynamic nonlocal turbulence model for the large and very large eddy simulation (LES, VLES) of the homogeneous isotropic turbulent flows (HIT). The model is based on a generalized (integer-to-noninteger) order Laplacian of the filtered velocity field, and a novel dynamic model has been formulated to avoid the need for tuning the model constant. Three data-driven approaches were introduced for the determination of the fractional-order to have a model which is totally free of any tuning parameter. Our analysis includes both the a priori and the a posteriori tests. In the former test, using a high-fidelity and well-resolved dataset from direct numerical simulations (DNS), we computed the correlation coefficients for the stress components of the subgrid-scale (SGS) stress tensor and the one we get directly from the DNS results. Moreover, we compared the probability density function of the ensemble-averaged SGS forces for different filter sizes. In the latter, we employed our new model along with other conventional models including static and dynamic Smagorinsky into our pseudo-spectral solver and tested the final predicted quantities. The results of the newly developed model exhibit an expressive agreement with the ground-truth DNS results in all components of the SGS stress and forces. Also, the model exhibits promising results in the VLES region as well as the LES region, which could be remarkably important for the cost-efficient nonlocal turbulence modeling e.g., in meteorological and environmental applications.Afterwards, we extend the same dynamic nonlocal idea to the scalar turbulence. To this end, we formulate the underlying nonlocal model starting from the filtered Boltzmann kinetic transport equation, where the divergence of subgrid-scale scalar fluxes emerges as a fractional-order Laplacian term in the filtered advection-diffusion model, coding the corresponding super-diffusive nature of scalar turbulence. Subsequently, we develop a robust data-driven algorithm for estimation of the fractional (non-integer) Laplacian exponent, where we on-the-fly calculate the corresponding model coefficient employing a new dynamic procedure. Our a priori tests show that our new dynamically nonlocal LES paradigm provides better agreements with the ground-truth filtered DNS data in comparison to the conventional static and dynamic Prandtl-Smagorisnky models. Moreover, in order to analyze the numerical stability and assessing the model's performance, we carry out a comprehensive a posteriori tests. They unanimously illustrate that our new model considerably outperforms other existing functional models, correctly predicting the backscattering phenomena at the same time and providing higher correlations at small-to-large filter sizes. We conclude that our proposed nonlocal subgrid-scale model for scalar turbulence is amenable for coarse LES and VLES frameworks even with strong anisotropies, applicable to environmental applications.Finally, we developed a new dynamic tempered fractional subgrid-scale model, DTF, for the large and very large eddy simulation of turbulent flows. The nonlocality of the turbulent flows is the innate feature that can be seen in the non-Gaussian statistics of the velocity increments and can be addressed properly by the nonlocal models in terms of the fractional operators. Using kinetic transport, we developed a dynamic tempered fractional model that encompasses the three main characteristics of an ideal turbulence model: (i) nonlocal nature, (ii) dynamic model constant computations, and (iii) tempered and finite variance property. Several simulations of forced homogeneous isotropic and multi-layer temporal shear layer turbulent flows have been done in the a priori and a posteriori analyses. The results show that the new model is not only numerically stable and can maintain low- and high-order structures in long-range simulations, but it also provides better predictions than local models and nontempered models.

Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence PDF Author: M. Lesieur
Publisher: Cambridge University Press
ISBN: 9780521781244
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Fluid Machinery and Fluid Mechanics

Fluid Machinery and Fluid Mechanics PDF Author: Jianzhong Xu
Publisher: Springer Science & Business Media
ISBN: 3540897496
Category : Technology & Engineering
Languages : en
Pages : 445

Get Book Here

Book Description
"Fluid Machinery and Fluid Mechanics: 4th International Symposium (4th ISFMFE)" is the proceedings of 4th International Symposium on Fluid Machinery and Fluid Engineering, held in Beijing November 24-27, 2008. It contains 69 highly informative technical papers presented at the Mei Lecture session and the technical sessions of the symposium. The Chinese Society of Engineering Thermophysics (CSET) organized the First, the Second and the Third International Symposium on Fluid Machinery and Fluid Engineering (1996, 2000 and 2004). The purpose of the 4th Symposium is to provide a common forum for exchange of scientific and technical information worldwide on fluid machinery and fluid engineering for scientists and engineers. The main subject of this symposium is "Fluid Machinery for Energy Conservation". The "Mei Lecture" reports on the most recent developments of fluid machinery in commemoration of the late professor Mei Zuyan. The book is intended for researchers and engineers in fluid machinery and fluid engineering. Jianzhong Xu is a professor at the Chinese Society of Engineering Thermophysics, Chinese Academy of Sciences, Beijing.

A Parallel Finite Volume Algorithm for Large-eddy Simulation of Turbulent Flows

A Parallel Finite Volume Algorithm for Large-eddy Simulation of Turbulent Flows PDF Author: Trong T. Bui
Publisher:
ISBN:
Category : Parallel computers
Languages : en
Pages : 28

Get Book Here

Book Description


A Modified Smagorinsky Subgrid Scale Model for the Large Eddy Simulation of Turbulent Flow

A Modified Smagorinsky Subgrid Scale Model for the Large Eddy Simulation of Turbulent Flow PDF Author: Tommy Kunhung Kim
Publisher:
ISBN:
Category :
Languages : en
Pages : 160

Get Book Here

Book Description


Large-eddy Simulation of Laminar-turbulent Breakdown at High Speeds with Dynamic Subgrid-scale Modeling

Large-eddy Simulation of Laminar-turbulent Breakdown at High Speeds with Dynamic Subgrid-scale Modeling PDF Author: Nabil M. El-Hady
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 64

Get Book Here

Book Description


A Multifractal Subgrid-scale Model for Large-eddy Simulation of Turbulent Flows

A Multifractal Subgrid-scale Model for Large-eddy Simulation of Turbulent Flows PDF Author: Gregory Charles Burton
Publisher:
ISBN:
Category :
Languages : en
Pages : 568

Get Book Here

Book Description


Direct and Large-Eddy Simulation XI

Direct and Large-Eddy Simulation XI PDF Author: Maria Vittoria Salvetti
Publisher: Springer
ISBN: 3030049159
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.