Author: Leonardo Franco
Publisher: Springer Science & Business Media
ISBN: 3642045111
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book presents a collection of invited works that consider constructive methods for neural networks, taken primarily from papers presented at a special th session held during the 18 International Conference on Artificial Neural Networks (ICANN 2008) in September 2008 in Prague, Czech Republic. The book is devoted to constructive neural networks and other incremental learning algorithms that constitute an alternative to the standard method of finding a correct neural architecture by trial-and-error. These algorithms provide an incremental way of building neural networks with reduced topologies for classification problems. Furthermore, these techniques produce not only the multilayer topologies but the value of the connecting synaptic weights that are determined automatically by the constructing algorithm, avoiding the risk of becoming trapped in local minima as might occur when using gradient descent algorithms such as the popular back-propagation. In most cases the convergence of the constructing algorithms is guaranteed by the method used. Constructive methods for building neural networks can potentially create more compact and robust models which are easily implemented in hardware and used for embedded systems. Thus a growing amount of current research in neural networks is oriented towards this important topic. The purpose of this book is to gather together some of the leading investigators and research groups in this growing area, and to provide an overview of the most recent advances in the techniques being developed for constructive neural networks and their applications.
Constructive Neural Networks
Author: Leonardo Franco
Publisher: Springer Science & Business Media
ISBN: 3642045111
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book presents a collection of invited works that consider constructive methods for neural networks, taken primarily from papers presented at a special th session held during the 18 International Conference on Artificial Neural Networks (ICANN 2008) in September 2008 in Prague, Czech Republic. The book is devoted to constructive neural networks and other incremental learning algorithms that constitute an alternative to the standard method of finding a correct neural architecture by trial-and-error. These algorithms provide an incremental way of building neural networks with reduced topologies for classification problems. Furthermore, these techniques produce not only the multilayer topologies but the value of the connecting synaptic weights that are determined automatically by the constructing algorithm, avoiding the risk of becoming trapped in local minima as might occur when using gradient descent algorithms such as the popular back-propagation. In most cases the convergence of the constructing algorithms is guaranteed by the method used. Constructive methods for building neural networks can potentially create more compact and robust models which are easily implemented in hardware and used for embedded systems. Thus a growing amount of current research in neural networks is oriented towards this important topic. The purpose of this book is to gather together some of the leading investigators and research groups in this growing area, and to provide an overview of the most recent advances in the techniques being developed for constructive neural networks and their applications.
Publisher: Springer Science & Business Media
ISBN: 3642045111
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book presents a collection of invited works that consider constructive methods for neural networks, taken primarily from papers presented at a special th session held during the 18 International Conference on Artificial Neural Networks (ICANN 2008) in September 2008 in Prague, Czech Republic. The book is devoted to constructive neural networks and other incremental learning algorithms that constitute an alternative to the standard method of finding a correct neural architecture by trial-and-error. These algorithms provide an incremental way of building neural networks with reduced topologies for classification problems. Furthermore, these techniques produce not only the multilayer topologies but the value of the connecting synaptic weights that are determined automatically by the constructing algorithm, avoiding the risk of becoming trapped in local minima as might occur when using gradient descent algorithms such as the popular back-propagation. In most cases the convergence of the constructing algorithms is guaranteed by the method used. Constructive methods for building neural networks can potentially create more compact and robust models which are easily implemented in hardware and used for embedded systems. Thus a growing amount of current research in neural networks is oriented towards this important topic. The purpose of this book is to gather together some of the leading investigators and research groups in this growing area, and to provide an overview of the most recent advances in the techniques being developed for constructive neural networks and their applications.
Artificial Neural Nets and Genetic Algorithms
Author: George D. Smith
Publisher: Springer Science & Business Media
ISBN: 3709164923
Category : Computers
Languages : en
Pages : 654
Book Description
This is the third in a series of conferences devoted primarily to the theory and applications of artificial neural networks and genetic algorithms. The first such event was held in Innsbruck, Austria, in April 1993, the second in Ales, France, in April 1995. We are pleased to host the 1997 event in the mediaeval city of Norwich, England, and to carryon the fine tradition set by its predecessors of providing a relaxed and stimulating environment for both established and emerging researchers working in these and other, related fields. This series of conferences is unique in recognising the relation between the two main themes of artificial neural networks and genetic algorithms, each having its origin in a natural process fundamental to life on earth, and each now well established as a paradigm fundamental to continuing technological development through the solution of complex, industrial, commercial and financial problems. This is well illustrated in this volume by the numerous applications of both paradigms to new and challenging problems. The third key theme of the series, therefore, is the integration of both technologies, either through the use of the genetic algorithm to construct the most effective network architecture for the problem in hand, or, more recently, the use of neural networks as approximate fitness functions for a genetic algorithm searching for good solutions in an 'incomplete' solution space, i.e. one for which the fitness is not easily established for every possible solution instance.
Publisher: Springer Science & Business Media
ISBN: 3709164923
Category : Computers
Languages : en
Pages : 654
Book Description
This is the third in a series of conferences devoted primarily to the theory and applications of artificial neural networks and genetic algorithms. The first such event was held in Innsbruck, Austria, in April 1993, the second in Ales, France, in April 1995. We are pleased to host the 1997 event in the mediaeval city of Norwich, England, and to carryon the fine tradition set by its predecessors of providing a relaxed and stimulating environment for both established and emerging researchers working in these and other, related fields. This series of conferences is unique in recognising the relation between the two main themes of artificial neural networks and genetic algorithms, each having its origin in a natural process fundamental to life on earth, and each now well established as a paradigm fundamental to continuing technological development through the solution of complex, industrial, commercial and financial problems. This is well illustrated in this volume by the numerous applications of both paradigms to new and challenging problems. The third key theme of the series, therefore, is the integration of both technologies, either through the use of the genetic algorithm to construct the most effective network architecture for the problem in hand, or, more recently, the use of neural networks as approximate fitness functions for a genetic algorithm searching for good solutions in an 'incomplete' solution space, i.e. one for which the fitness is not easily established for every possible solution instance.
Constructive Neural Networks
Author: Leonardo Franco
Publisher: Springer
ISBN: 364204512X
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
This book presents a collection of invited works that consider constructive methods for neural networks, taken primarily from papers presented at a special th session held during the 18 International Conference on Artificial Neural Networks (ICANN 2008) in September 2008 in Prague, Czech Republic. The book is devoted to constructive neural networks and other incremental learning algorithms that constitute an alternative to the standard method of finding a correct neural architecture by trial-and-error. These algorithms provide an incremental way of building neural networks with reduced topologies for classification problems. Furthermore, these techniques produce not only the multilayer topologies but the value of the connecting synaptic weights that are determined automatically by the constructing algorithm, avoiding the risk of becoming trapped in local minima as might occur when using gradient descent algorithms such as the popular back-propagation. In most cases the convergence of the constructing algorithms is guaranteed by the method used. Constructive methods for building neural networks can potentially create more compact and robust models which are easily implemented in hardware and used for embedded systems. Thus a growing amount of current research in neural networks is oriented towards this important topic. The purpose of this book is to gather together some of the leading investigators and research groups in this growing area, and to provide an overview of the most recent advances in the techniques being developed for constructive neural networks and their applications.
Publisher: Springer
ISBN: 364204512X
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
This book presents a collection of invited works that consider constructive methods for neural networks, taken primarily from papers presented at a special th session held during the 18 International Conference on Artificial Neural Networks (ICANN 2008) in September 2008 in Prague, Czech Republic. The book is devoted to constructive neural networks and other incremental learning algorithms that constitute an alternative to the standard method of finding a correct neural architecture by trial-and-error. These algorithms provide an incremental way of building neural networks with reduced topologies for classification problems. Furthermore, these techniques produce not only the multilayer topologies but the value of the connecting synaptic weights that are determined automatically by the constructing algorithm, avoiding the risk of becoming trapped in local minima as might occur when using gradient descent algorithms such as the popular back-propagation. In most cases the convergence of the constructing algorithms is guaranteed by the method used. Constructive methods for building neural networks can potentially create more compact and robust models which are easily implemented in hardware and used for embedded systems. Thus a growing amount of current research in neural networks is oriented towards this important topic. The purpose of this book is to gather together some of the leading investigators and research groups in this growing area, and to provide an overview of the most recent advances in the techniques being developed for constructive neural networks and their applications.
Predictive Modular Neural Networks
Author: Vassilios Petridis
Publisher: Springer Science & Business Media
ISBN: 1461555558
Category : Science
Languages : en
Pages : 311
Book Description
The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.
Publisher: Springer Science & Business Media
ISBN: 1461555558
Category : Science
Languages : en
Pages : 311
Book Description
The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.
Compensatory Genetic Fuzzy Neural Networks and Their Applications
Author: Yan-Qing Zhang
Publisher: World Scientific
ISBN: 9789810233495
Category : Computers
Languages : en
Pages : 206
Book Description
This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques.
Publisher: World Scientific
ISBN: 9789810233495
Category : Computers
Languages : en
Pages : 206
Book Description
This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques.
Implementation Techniques
Author: Cornelius T. Leondes
Publisher: Academic Press
ISBN: 0080551823
Category : Computers
Languages : en
Pages : 421
Book Description
This volume covers practical and effective implementation techniques, including recurrent methods, Boltzmann machines, constructive learning with methods for the reduction of complexity in neural network systems, modular systems, associative memory, neural network design based on the concept of the Inductive Logic Unit, and a comprehensive treatment of implementations in the area of data classification. Numerous examples enhance the text. Practitioners, researchers,and students in engineering and computer science will find Implementation Techniques a comprehensive and powerful reference. - Recurrent methods - Boltzmann machines - Constructive learning with methods for the reduction of complexity in neural network systems - Modular systems - Associative memory - Neural network design based on the concept of the Inductive Logic Unit - Data classification - Integrated neuron model systems that function as programmable rational approximators
Publisher: Academic Press
ISBN: 0080551823
Category : Computers
Languages : en
Pages : 421
Book Description
This volume covers practical and effective implementation techniques, including recurrent methods, Boltzmann machines, constructive learning with methods for the reduction of complexity in neural network systems, modular systems, associative memory, neural network design based on the concept of the Inductive Logic Unit, and a comprehensive treatment of implementations in the area of data classification. Numerous examples enhance the text. Practitioners, researchers,and students in engineering and computer science will find Implementation Techniques a comprehensive and powerful reference. - Recurrent methods - Boltzmann machines - Constructive learning with methods for the reduction of complexity in neural network systems - Modular systems - Associative memory - Neural network design based on the concept of the Inductive Logic Unit - Data classification - Integrated neuron model systems that function as programmable rational approximators
Modern Antenna Handbook
Author: Constantine A. Balanis
Publisher: John Wiley & Sons
ISBN: 1118209753
Category : Technology & Engineering
Languages : en
Pages : 1617
Book Description
The most up-to-date, comprehensive treatment of classical and modern antennas and their related technologies Modern Antenna Handbook represents the most current and complete thinking in the field of antennas. The handbook is edited by one of the most recognizable, prominent, and prolific authors, educators, and researchers on antennas and electromagnetics. Each chapter is authored by one or more leading international experts and includes cover-age of current and future antenna-related technology. The information is of a practical nature and is intended to be useful for researchers as well as practicing engineers. From the fundamental parameters of antennas to antennas for mobile wireless communications and medical applications, Modern Antenna Handbook covers everything professional engineers, consultants, researchers, and students need to know about the recent developments and the future direction of this fast-paced field. In addition to antenna topics, the handbook also covers modern technologies such as metamaterials, microelectromechanical systems (MEMS), frequency selective surfaces (FSS), and radar cross sections (RCS) and their applications to antennas, while five chapters are devoted to advanced numerical/computational methods targeted primarily for the analysis and design of antennas.
Publisher: John Wiley & Sons
ISBN: 1118209753
Category : Technology & Engineering
Languages : en
Pages : 1617
Book Description
The most up-to-date, comprehensive treatment of classical and modern antennas and their related technologies Modern Antenna Handbook represents the most current and complete thinking in the field of antennas. The handbook is edited by one of the most recognizable, prominent, and prolific authors, educators, and researchers on antennas and electromagnetics. Each chapter is authored by one or more leading international experts and includes cover-age of current and future antenna-related technology. The information is of a practical nature and is intended to be useful for researchers as well as practicing engineers. From the fundamental parameters of antennas to antennas for mobile wireless communications and medical applications, Modern Antenna Handbook covers everything professional engineers, consultants, researchers, and students need to know about the recent developments and the future direction of this fast-paced field. In addition to antenna topics, the handbook also covers modern technologies such as metamaterials, microelectromechanical systems (MEMS), frequency selective surfaces (FSS), and radar cross sections (RCS) and their applications to antennas, while five chapters are devoted to advanced numerical/computational methods targeted primarily for the analysis and design of antennas.
Artificial Neural Nets and Genetic Algorithms
Author: David W. Pearson
Publisher: Springer Science & Business Media
ISBN: 370910646X
Category : Computers
Languages : en
Pages : 274
Book Description
The 2003 edition of ICANNGA marks a milestone in this conference series, because it is the tenth year of its existence. The series began in 1993 with the inaugural conference at Innsbruck in Austria. At that first conference, the organisers decided to organise a similar scientific meeting every two years. As a result, conferences were organised at Ales in France (1995), Norwich in England (1997), Portoroz in Slovenia (1999) and Prague in the Czech Republic (2001). It is a great honour that the conference is taking place in France for the second time. Each edition of ICANNGA has been special and had its own character. Not only that, participants have been able to sample the life and local culture in five different European coun tries. Originally limited to neural networks and genetic algorithms the conference has broadened its outlook over the past ten years and now includes papers on soft computing and artificial intelligence in general. This is one of the reasons why the reader will find papers on fuzzy logic and various other topics not directly related to neural networks or genetic algorithms included in these proceedings. We have, however, kept the same name, "International Conference on Artificial Neural Networks and Genetic Algorithms". All of the papers were sorted into one of six principal categories: neural network theory, neural network applications, genetic algorithm and evolutionary computation theory, genetic algorithm and evolutionary computation applications, fuzzy and soft computing theory, fuzzy and soft computing applications.
Publisher: Springer Science & Business Media
ISBN: 370910646X
Category : Computers
Languages : en
Pages : 274
Book Description
The 2003 edition of ICANNGA marks a milestone in this conference series, because it is the tenth year of its existence. The series began in 1993 with the inaugural conference at Innsbruck in Austria. At that first conference, the organisers decided to organise a similar scientific meeting every two years. As a result, conferences were organised at Ales in France (1995), Norwich in England (1997), Portoroz in Slovenia (1999) and Prague in the Czech Republic (2001). It is a great honour that the conference is taking place in France for the second time. Each edition of ICANNGA has been special and had its own character. Not only that, participants have been able to sample the life and local culture in five different European coun tries. Originally limited to neural networks and genetic algorithms the conference has broadened its outlook over the past ten years and now includes papers on soft computing and artificial intelligence in general. This is one of the reasons why the reader will find papers on fuzzy logic and various other topics not directly related to neural networks or genetic algorithms included in these proceedings. We have, however, kept the same name, "International Conference on Artificial Neural Networks and Genetic Algorithms". All of the papers were sorted into one of six principal categories: neural network theory, neural network applications, genetic algorithm and evolutionary computation theory, genetic algorithm and evolutionary computation applications, fuzzy and soft computing theory, fuzzy and soft computing applications.
Proceedings
Author: Brijesh Verma
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN: 9780769503004
Category : Computers
Languages : en
Pages : 524
Book Description
This book brings together two different subjects, computational intelligence and multimedia, to stress the expanding importance of these two areas for future technological development. The 90-plus papers presented here--a selection of presentations from the September 1999 conference--address various aspects of agent- based systems, artificial neural networks, evolutionary algorithms, hybrid systems, image and signal processing, rough sets/logic synthesis, knowledge-based engineering, memory, storage, retrieval, pattern recognition, formal models for multimedia, telecommunications, and virtual reality. No subject index. Annotation copyrighted by Book News, Inc., Portland, OR.
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN: 9780769503004
Category : Computers
Languages : en
Pages : 524
Book Description
This book brings together two different subjects, computational intelligence and multimedia, to stress the expanding importance of these two areas for future technological development. The 90-plus papers presented here--a selection of presentations from the September 1999 conference--address various aspects of agent- based systems, artificial neural networks, evolutionary algorithms, hybrid systems, image and signal processing, rough sets/logic synthesis, knowledge-based engineering, memory, storage, retrieval, pattern recognition, formal models for multimedia, telecommunications, and virtual reality. No subject index. Annotation copyrighted by Book News, Inc., Portland, OR.
Artificial Neural Networks - ICANN 2008
Author: Věra Kůrková
Publisher: Springer Science & Business Media
ISBN: 3540875581
Category : Artificial intelligence
Languages : en
Pages : 1012
Book Description
This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The second volume is devoted to pattern recognition and data analysis, hardware and embedded systems, computational neuroscience, connectionistic cognitive science, neuroinformatics and neural dynamics. it also contains papers from two special sessions coupling, synchronies, and firing patterns: from cognition to disease, and constructive neural networks and two workshops new trends in self-organization and optimization of artificial neural networks, and adaptive mechanisms of the perception-action cycle.
Publisher: Springer Science & Business Media
ISBN: 3540875581
Category : Artificial intelligence
Languages : en
Pages : 1012
Book Description
This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The second volume is devoted to pattern recognition and data analysis, hardware and embedded systems, computational neuroscience, connectionistic cognitive science, neuroinformatics and neural dynamics. it also contains papers from two special sessions coupling, synchronies, and firing patterns: from cognition to disease, and constructive neural networks and two workshops new trends in self-organization and optimization of artificial neural networks, and adaptive mechanisms of the perception-action cycle.