A Mathematical Introduction to Wavelets

A Mathematical Introduction to Wavelets PDF Author: P. Wojtaszczyk
Publisher: Cambridge University Press
ISBN: 9780521578943
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
The only introduction to wavelets that doesn't avoid the tough mathematical questions.

A Mathematical Introduction to Wavelets

A Mathematical Introduction to Wavelets PDF Author: P. Wojtaszczyk
Publisher: Cambridge University Press
ISBN: 9780521578943
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
The only introduction to wavelets that doesn't avoid the tough mathematical questions.

An Introduction to Wavelets

An Introduction to Wavelets PDF Author: Charles K. Chui
Publisher: Elsevier
ISBN: 1483282864
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.

Wavelets

Wavelets PDF Author: Charles K. Chui
Publisher: SIAM
ISBN: 9780898719727
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Wavelets continue to be powerful mathematical tools that can be used to solve problems for which the Fourier (spectral) method does not perform well or cannot handle. This book is for engineers, applied mathematicians, and other scientists who want to learn about using wavelets to analyze, process, and synthesize images and signals. Applications are described in detail and there are step-by-step instructions about how to construct and apply wavelets. The only mathematically rigorous monograph written by a mathematician specifically for nonspecialists, it describes the basic concepts of these mathematical techniques, outlines the procedures for using them, compares the performance of various approaches, and provides information for problem solving, putting the reader at the forefront of current research.

An Introduction to Wavelet Analysis

An Introduction to Wavelet Analysis PDF Author: David F. Walnut
Publisher: Springer Science & Business Media
ISBN: 1461200016
Category : Computers
Languages : en
Pages : 453

Get Book Here

Book Description
This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.

An Introduction to Wavelets Through Linear Algebra

An Introduction to Wavelets Through Linear Algebra PDF Author: M.W. Frazier
Publisher: Springer
ISBN: 3642855709
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
Mathematics majors at Michigan State University take a "Capstone" course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basic wavelet theory is a natural topic for such a course. By name, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are sufficiently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity.

A First Course on Wavelets

A First Course on Wavelets PDF Author: Eugenio Hernandez
Publisher: CRC Press
ISBN: 9781420049985
Category : Mathematics
Languages : en
Pages : 518

Get Book Here

Book Description
Wavelet theory had its origin in quantum field theory, signal analysis, and function space theory. In these areas wavelet-like algorithms replace the classical Fourier-type expansion of a function. This unique new book is an excellent introduction to the basic properties of wavelets, from background math to powerful applications. The authors provide elementary methods for constructing wavelets, and illustrate several new classes of wavelets. The text begins with a description of local sine and cosine bases that have been shown to be very effective in applications. Very little mathematical background is needed to follow this material. A complete treatment of band-limited wavelets follows. These are characterized by some elementary equations, allowing the authors to introduce many new wavelets. Next, the idea of multiresolution analysis (MRA) is developed, and the authors include simplified presentations of previous studies, particularly for compactly supported wavelets. Some of the topics treated include: Several bases generated by a single function via translations and dilations Multiresolution analysis, compactly supported wavelets, and spline wavelets Band-limited wavelets Unconditionality of wavelet bases Characterizations of many of the principal objects in the theory of wavelets, such as low-pass filters and scaling functions The authors also present the basic philosophy that all orthonormal wavelets are completely characterized by two simple equations, and that most properties and constructions of wavelets can be developed using these two equations. Material related to applications is provided, and constructions of splines wavelets are presented. Mathematicians, engineers, physicists, and anyone with a mathematical background will find this to be an important text for furthering their studies on wavelets.

Wavelets

Wavelets PDF Author: John J. Benedetto
Publisher: CRC Press
ISBN: 1000443469
Category : Mathematics
Languages : en
Pages : 586

Get Book Here

Book Description
Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.

Introduction to Fourier Analysis and Wavelets

Introduction to Fourier Analysis and Wavelets PDF Author: Mark A. Pinsky
Publisher: American Mathematical Soc.
ISBN: 082184797X
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description
This text provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. It contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.

Wavelets

Wavelets PDF Author: Amir-Homayoon Najmi
Publisher: JHU Press
ISBN: 1421405598
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
Introduced nearly three decades ago as a variable resolution alternative to the Fourier transform, a wavelet is a short oscillatory waveform for analysis of transients. The discrete wavelet transform has remarkable multi-resolution and energy-compaction properties. Amir-Homayoon Najmi’s introduction to wavelet theory explains this mathematical concept clearly and succinctly. Wavelets are used in processing digital signals and imagery from myriad sources. They form the backbone of the JPEG2000 compression standard, and the Federal Bureau of Investigation uses biorthogonal wavelets to compress and store its vast database of fingerprints. Najmi provides the mathematics that demonstrate how wavelets work, describes how to construct them, and discusses their importance as a tool to investigate and process signals and imagery. He reviews key concepts such as frames, localizing transforms, orthogonal and biorthogonal bases, and multi-resolution. His examples include the Haar, the Shannon, and the Daubechies families of orthogonal and biorthogonal wavelets. Our capacity and need for collecting and transmitting digital data is increasing at an astonishing rate. So too is the importance of wavelets to anyone working with and analyzing digital data. Najmi’s primer will be an indispensable resource for those in computer science, the physical sciences, applied mathematics, and engineering who wish to obtain an in-depth understanding and working knowledge of this fascinating and evolving field.

Ten Lectures on Wavelets

Ten Lectures on Wavelets PDF Author: Ingrid Daubechies
Publisher: SIAM
ISBN: 9781611970104
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
Wavelets are a mathematical development that may revolutionize the world of information storage and retrieval according to many experts. They are a fairly simple mathematical tool now being applied to the compression of data--such as fingerprints, weather satellite photographs, and medical x-rays--that were previously thought to be impossible to condense without losing crucial details. This monograph contains 10 lectures presented by Dr. Daubechies as the principal speaker at the 1990 CBMS-NSF Conference on Wavelets and Applications. The author has worked on several aspects of the wavelet transform and has developed a collection of wavelets that are remarkably efficient.