Author: T.S. Michael
Publisher: JHU Press
ISBN: 0801897041
Category : Mathematics
Languages : en
Pages : 273
Book Description
An “accessible and engaging” tool for understanding the branch of mathematics that is so crucial to modern computer science, using real-life problems (Mathematical Reviews). What is the maximum number of pizza slices one can get by making four straight cuts through a circular pizza? How does a computer determine the best set of pixels to represent a straight line on a computer screen? How many people at a minimum does it take to guard an art gallery? Discrete mathematics has the answer to these—and many other—questions of picking, choosing, and shuffling. T. S. Michael’s gem of a book brings this vital but tough-to-teach subject to life using examples from the real world and popular culture. Each chapter uses one problem—such as slicing a pizza—to detail key concepts about counting numbers and arranging finite sets. Michael takes a different perspective in tackling each of eight problems and explains them in differing degrees of generality, showing in the process how the same mathematical concepts appear in varied guises and contexts. In doing so, he imparts a broader understanding of the ideas underlying discrete mathematics and helps readers appreciate and understand mathematical thinking and discovery. This book explains the basic concepts of discrete mathematics and demonstrates how to apply them in largely nontechnical language. The explanations and formulas can be grasped with a basic understanding of linear equations.
How to Guard an Art Gallery
Author: T.S. Michael
Publisher: JHU Press
ISBN: 0801897041
Category : Mathematics
Languages : en
Pages : 273
Book Description
An “accessible and engaging” tool for understanding the branch of mathematics that is so crucial to modern computer science, using real-life problems (Mathematical Reviews). What is the maximum number of pizza slices one can get by making four straight cuts through a circular pizza? How does a computer determine the best set of pixels to represent a straight line on a computer screen? How many people at a minimum does it take to guard an art gallery? Discrete mathematics has the answer to these—and many other—questions of picking, choosing, and shuffling. T. S. Michael’s gem of a book brings this vital but tough-to-teach subject to life using examples from the real world and popular culture. Each chapter uses one problem—such as slicing a pizza—to detail key concepts about counting numbers and arranging finite sets. Michael takes a different perspective in tackling each of eight problems and explains them in differing degrees of generality, showing in the process how the same mathematical concepts appear in varied guises and contexts. In doing so, he imparts a broader understanding of the ideas underlying discrete mathematics and helps readers appreciate and understand mathematical thinking and discovery. This book explains the basic concepts of discrete mathematics and demonstrates how to apply them in largely nontechnical language. The explanations and formulas can be grasped with a basic understanding of linear equations.
Publisher: JHU Press
ISBN: 0801897041
Category : Mathematics
Languages : en
Pages : 273
Book Description
An “accessible and engaging” tool for understanding the branch of mathematics that is so crucial to modern computer science, using real-life problems (Mathematical Reviews). What is the maximum number of pizza slices one can get by making four straight cuts through a circular pizza? How does a computer determine the best set of pixels to represent a straight line on a computer screen? How many people at a minimum does it take to guard an art gallery? Discrete mathematics has the answer to these—and many other—questions of picking, choosing, and shuffling. T. S. Michael’s gem of a book brings this vital but tough-to-teach subject to life using examples from the real world and popular culture. Each chapter uses one problem—such as slicing a pizza—to detail key concepts about counting numbers and arranging finite sets. Michael takes a different perspective in tackling each of eight problems and explains them in differing degrees of generality, showing in the process how the same mathematical concepts appear in varied guises and contexts. In doing so, he imparts a broader understanding of the ideas underlying discrete mathematics and helps readers appreciate and understand mathematical thinking and discovery. This book explains the basic concepts of discrete mathematics and demonstrates how to apply them in largely nontechnical language. The explanations and formulas can be grasped with a basic understanding of linear equations.
A Mathematical Gallery
Author: Lisl Gaal
Publisher: American Mathematical Soc.
ISBN: 1470441594
Category : Mathematics
Languages : en
Pages : 66
Book Description
Embark on a playful mathematical tour, aided by Lisl Gaal's illustrations of familiar scenes and whimsical triggers for the imagination. Along the way, find fruit stands arranged using polynomial multiplication, checkerboard tablecloths sewed with patterns of primes in a two-dimensional number system, and deceptive cats revealing that simple counting is not always so simple. Grasping the mathematics in this book requires only a basic background in algebra and geometry, so while the ideas can be understood and enjoyed at a variety of levels, it is recommended for ages 13–99. Touching on topics in current research, this is a book to read and revisit, gaining new insights each time.
Publisher: American Mathematical Soc.
ISBN: 1470441594
Category : Mathematics
Languages : en
Pages : 66
Book Description
Embark on a playful mathematical tour, aided by Lisl Gaal's illustrations of familiar scenes and whimsical triggers for the imagination. Along the way, find fruit stands arranged using polynomial multiplication, checkerboard tablecloths sewed with patterns of primes in a two-dimensional number system, and deceptive cats revealing that simple counting is not always so simple. Grasping the mathematics in this book requires only a basic background in algebra and geometry, so while the ideas can be understood and enjoyed at a variety of levels, it is recommended for ages 13–99. Touching on topics in current research, this is a book to read and revisit, gaining new insights each time.
Hyper Symmetries
Author: Ph. D. Dejenie A. Lakew
Publisher: AuthorHouse
ISBN: 1449049524
Category : Mathematics
Languages : en
Pages : 99
Book Description
This Mathematical imagery book, is a show case for the ubiquity of Mathematics, Mathematics learning and doing Mathematics. The book contains painstakingly crafted images that look like beautiful natural phenomena which we see in the outside world and yet all are generated by Mathematical formulas. The author therefore concludes that all things we see in nature have Mathematical expressions that describe them. The book is therefore a visual eye opener for those who need to appreciate, learn, do and see a different and artistic side of Mathematics. Few of the images are posted in the imagery section of the American Mathematical Society's web site. The book is suitable for almost all people including parents, students, teachers, artists, engineers, scientists, Mathematicians and others. The author invites you a tour in to a museum of Mathematical images in which super symmetric images are abundantly presented.
Publisher: AuthorHouse
ISBN: 1449049524
Category : Mathematics
Languages : en
Pages : 99
Book Description
This Mathematical imagery book, is a show case for the ubiquity of Mathematics, Mathematics learning and doing Mathematics. The book contains painstakingly crafted images that look like beautiful natural phenomena which we see in the outside world and yet all are generated by Mathematical formulas. The author therefore concludes that all things we see in nature have Mathematical expressions that describe them. The book is therefore a visual eye opener for those who need to appreciate, learn, do and see a different and artistic side of Mathematics. Few of the images are posted in the imagery section of the American Mathematical Society's web site. The book is suitable for almost all people including parents, students, teachers, artists, engineers, scientists, Mathematicians and others. The author invites you a tour in to a museum of Mathematical images in which super symmetric images are abundantly presented.
Gallery of the Infinite
Author: Richard Evan Schwartz
Publisher: American Mathematical Soc.
ISBN: 1470425572
Category : Arithmetic
Languages : en
Pages : 188
Book Description
Gallery of the Infinite is a mathematician's unique view of the infinitely many sizes of infinity. Written in a playful yet informative style, it introduces important concepts from set theory (including the Cantor Diagonalization Method and the Cantor-Bernstein Theorem) using colorful pictures, with little text and almost no formulas. It requires no specialized background and is suitable for anyone with an interest in the infinite, from advanced middle-school students to inquisitive adults.
Publisher: American Mathematical Soc.
ISBN: 1470425572
Category : Arithmetic
Languages : en
Pages : 188
Book Description
Gallery of the Infinite is a mathematician's unique view of the infinitely many sizes of infinity. Written in a playful yet informative style, it introduces important concepts from set theory (including the Cantor Diagonalization Method and the Cantor-Bernstein Theorem) using colorful pictures, with little text and almost no formulas. It requires no specialized background and is suitable for anyone with an interest in the infinite, from advanced middle-school students to inquisitive adults.
The Calculus Gallery
Author: William Dunham
Publisher: Princeton University Press
ISBN: 069118285X
Category : Mathematics
Languages : en
Pages : 256
Book Description
More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway to higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. Now with a new preface by the author, this book documents the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching—a story of genius triumphing over some of the toughest, subtlest problems imaginable. In touring The Calculus Gallery, we can see how it all came to be.
Publisher: Princeton University Press
ISBN: 069118285X
Category : Mathematics
Languages : en
Pages : 256
Book Description
More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway to higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. Now with a new preface by the author, this book documents the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching—a story of genius triumphing over some of the toughest, subtlest problems imaginable. In touring The Calculus Gallery, we can see how it all came to be.
Mathematics and Art
Author: Lynn Gamwell
Publisher: Princeton University Press
ISBN: 0691165289
Category : Art
Languages : en
Pages : 576
Book Description
This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.
Publisher: Princeton University Press
ISBN: 0691165289
Category : Art
Languages : en
Pages : 576
Book Description
This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.
Mathematical Pictures at a Data Science Exhibition
Author: Simon Foucart
Publisher: Cambridge University Press
ISBN: 1316518884
Category : Computers
Languages : en
Pages : 339
Book Description
A diverse selection of data science topics explored through a mathematical lens.
Publisher: Cambridge University Press
ISBN: 1316518884
Category : Computers
Languages : en
Pages : 339
Book Description
A diverse selection of data science topics explored through a mathematical lens.
Art Gallery Theorems and Algorithms
Author: Joseph O'Rourke
Publisher: Oxford University Press, USA
ISBN:
Category : Computers
Languages : en
Pages : 312
Book Description
Art gallery theorems and algorithms are so called because they relate to problems involving the visibility of geometrical shapes and their internal surfaces. This book explores generalizations and specializations in these areas. Among the presentations are recently discovered theorems on orthogonal polygons, polygons with holes, exterior visibility, visibility graphs, and visibility in three dimensions. The author formulates many open problems and offers several conjectures, providing arguments which may be followed by anyone familiar with basic graph theory and algorithms. This work may be applied to robotics and artificial intelligence as well as other fields, and will be especially useful to computer scientists working with computational and combinatorial geometry.
Publisher: Oxford University Press, USA
ISBN:
Category : Computers
Languages : en
Pages : 312
Book Description
Art gallery theorems and algorithms are so called because they relate to problems involving the visibility of geometrical shapes and their internal surfaces. This book explores generalizations and specializations in these areas. Among the presentations are recently discovered theorems on orthogonal polygons, polygons with holes, exterior visibility, visibility graphs, and visibility in three dimensions. The author formulates many open problems and offers several conjectures, providing arguments which may be followed by anyone familiar with basic graph theory and algorithms. This work may be applied to robotics and artificial intelligence as well as other fields, and will be especially useful to computer scientists working with computational and combinatorial geometry.
Math and the Mona Lisa
Author: Bulent Atalay
Publisher: Smithsonian Institution
ISBN: 1588343537
Category : Art
Languages : en
Pages : 297
Book Description
Leonardo da Vinci was one of history's true geniuses, equally brilliant as an artist, scientist, and mathematician. Readers of The Da Vinci Code were given a glimpse of the mysterious connections between math, science, and Leonardo's art. Math and the Mona Lisa picks up where The Da Vinci Code left off, illuminating Leonardo's life and work to uncover connections that, until now, have been known only to scholars. Bülent Atalay, a distinguished scientist and artist, examines the science and mathematics that underlie Leonardo's work, paying special attention to the proportions, patterns, shapes, and symmetries that scientists and mathematicians have also identified in nature. Following Leonardo's own unique model, Atalay searches for the internal dynamics of art and science, revealing to us the deep unity of the two cultures. He provides a broad overview of the development of science from the dawn of civilization to today's quantum mechanics. From this base of information, Atalay offers a fascinating view into Leonardo's restless intellect and modus operandi, allowing us to see the source of his ideas and to appreciate his art from a new perspective.
Publisher: Smithsonian Institution
ISBN: 1588343537
Category : Art
Languages : en
Pages : 297
Book Description
Leonardo da Vinci was one of history's true geniuses, equally brilliant as an artist, scientist, and mathematician. Readers of The Da Vinci Code were given a glimpse of the mysterious connections between math, science, and Leonardo's art. Math and the Mona Lisa picks up where The Da Vinci Code left off, illuminating Leonardo's life and work to uncover connections that, until now, have been known only to scholars. Bülent Atalay, a distinguished scientist and artist, examines the science and mathematics that underlie Leonardo's work, paying special attention to the proportions, patterns, shapes, and symmetries that scientists and mathematicians have also identified in nature. Following Leonardo's own unique model, Atalay searches for the internal dynamics of art and science, revealing to us the deep unity of the two cultures. He provides a broad overview of the development of science from the dawn of civilization to today's quantum mechanics. From this base of information, Atalay offers a fascinating view into Leonardo's restless intellect and modus operandi, allowing us to see the source of his ideas and to appreciate his art from a new perspective.
Mathematics and Art
Author: Claude P. Bruter
Publisher: Springer Science & Business Media
ISBN: 3662049090
Category : Mathematics
Languages : en
Pages : 337
Book Description
Recent progress in research, teaching and communication has arisen from the use of new tools in visualization. To be fruitful, visualization needs precision and beauty. This book is a source of mathematical illustrations by mathematicians as well as artists. It offers examples in many basic mathematical fields including polyhedra theory, group theory, solving polynomial equations, dynamical systems and differential topology. For a long time, arts, architecture, music and painting have been the source of new developments in mathematics. And vice versa, artists have often found new techniques, themes and inspiration within mathematics. Here, while mathematicians provide mathematical tools for the analysis of musical creations, the contributions from sculptors emphasize the role of mathematics in their work.
Publisher: Springer Science & Business Media
ISBN: 3662049090
Category : Mathematics
Languages : en
Pages : 337
Book Description
Recent progress in research, teaching and communication has arisen from the use of new tools in visualization. To be fruitful, visualization needs precision and beauty. This book is a source of mathematical illustrations by mathematicians as well as artists. It offers examples in many basic mathematical fields including polyhedra theory, group theory, solving polynomial equations, dynamical systems and differential topology. For a long time, arts, architecture, music and painting have been the source of new developments in mathematics. And vice versa, artists have often found new techniques, themes and inspiration within mathematics. Here, while mathematicians provide mathematical tools for the analysis of musical creations, the contributions from sculptors emphasize the role of mathematics in their work.