A History of Inverse Probability

A History of Inverse Probability PDF Author: Andrew I. Dale
Publisher: Springer Science & Business Media
ISBN: 9780387988078
Category : Mathematics
Languages : de
Pages : 714

Get Book Here

Book Description
This is a history of the use of Bayes theoremfrom its discovery by Thomas Bayes to the rise of the statistical competitors in the first part of the twentieth century. The book focuses particularly on the development of one of the fundamental aspects of Bayesian statistics, and in this new edition readers will find new sections on contributors to the theory. In addition, this edition includes amplified discussion of relevant work.

Fisher, Neyman, and the Creation of Classical Statistics

Fisher, Neyman, and the Creation of Classical Statistics PDF Author: Erich L. Lehmann
Publisher: Springer Science & Business Media
ISBN: 1441995005
Category : Mathematics
Languages : en
Pages : 123

Get Book Here

Book Description
Classical statistical theory—hypothesis testing, estimation, and the design of experiments and sample surveys—is mainly the creation of two men: Ronald A. Fisher (1890-1962) and Jerzy Neyman (1894-1981). Their contributions sometimes complemented each other, sometimes occurred in parallel, and, particularly at later stages, often were in strong opposition. The two men would not be pleased to see their names linked in this way, since throughout most of their working lives they detested each other. Nevertheless, they worked on the same problems, and through their combined efforts created a new discipline. This new book by E.L. Lehmann, himself a student of Neyman’s, explores the relationship between Neyman and Fisher, as well as their interactions with other influential statisticians, and the statistical history they helped create together. Lehmann uses direct correspondence and original papers to recreate an historical account of the creation of the Neyman-Pearson Theory as well as Fisher’s dissent, and other important statistical theories.

A History of Mathematical Statistics from 1750 to 1930

A History of Mathematical Statistics from 1750 to 1930 PDF Author: Anders Hald
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 832

Get Book Here

Book Description
The long-awaited second volume of Anders Hald's history of the development of mathematical statistics. Anders Hald's A History of Probability and Statistics and Their Applications before 1750 is already considered a classic by many mathematicians and historians. This new volume picks up where its predecessor left off, describing the contemporaneous development and interaction of four topics: direct probability theory and sampling distributions; inverse probability by Bayes and Laplace; the method of least squares and the central limit theorem; and selected topics in estimation theory after 1830. In this rich and detailed work, Hald carefully traces the history of parametric statistical inference, the development of the corresponding mathematical methods, and some typical applications. Not surprisingly, the ideas, concepts, methods, and results of Laplace, Gauss, and Fisher dominate his account. In particular, Hald analyzes the work and interactions of Laplace and Gauss and describes their contributions to modern theory. Hald also offers a great deal of new material on the history of the period and enhances our understanding of both the controversies and continuities that developed between the different schools. To enable readers to compare the contributions of various historical figures, Professor Hald has rewritten the original papers in a uniform modern terminology and notation, while leaving the ideas unchanged. Statisticians, probabilists, actuaries, mathematicians, historians of science, and advanced students will find absorbing reading in the author's insightful description of important problems and how they gradually moved toward solution.

A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935 PDF Author: Anders Hald
Publisher: Springer Science & Business Media
ISBN: 0387464093
Category : Mathematics
Languages : en
Pages : 221

Get Book Here

Book Description
This book offers a detailed history of parametric statistical inference. Covering the period between James Bernoulli and R.A. Fisher, it examines: binomial statistical inference; statistical inference by inverse probability; the central limit theorem and linear minimum variance estimation by Laplace and Gauss; error theory, skew distributions, correlation, sampling distributions; and the Fisherian Revolution. Lively biographical sketches of many of the main characters are featured throughout, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. Also examined are the roles played by DeMoivre, James Bernoulli, and Lagrange.

Breakthroughs in Statistics

Breakthroughs in Statistics PDF Author: Samuel Kotz
Publisher: Springer Science & Business Media
ISBN: 1461206677
Category : Mathematics
Languages : en
Pages : 576

Get Book Here

Book Description
Volume III includes more selections of articles that have initiated fundamental changes in statistical methodology. It contains articles published before 1980 that were overlooked in the previous two volumes plus articles from the 1980's - all of them chosen after consulting many of today's leading statisticians.

A History of Probability and Statistics and Their Applications before 1750

A History of Probability and Statistics and Their Applications before 1750 PDF Author: Anders Hald
Publisher: John Wiley & Sons
ISBN: 047172517X
Category : Mathematics
Languages : en
Pages : 611

Get Book Here

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of History of Probability and Statistics and Their Applications before 1750 "This is a marvelous book . . . Anyone with the slightest interest in the history of statistics, or in understanding how modern ideas have developed, will find this an invaluable resource." –Short Book Reviews of ISI

Introduction to Probability

Introduction to Probability PDF Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Probability: A Very Short Introduction

Probability: A Very Short Introduction PDF Author: John Haigh
Publisher: Oxford University Press
ISBN: 0199588481
Category : Mathematics
Languages : en
Pages : 145

Get Book Here

Book Description
Making good decisions under conditions of uncertainty requires an appreciation of the way random chance works. In this Very Short Introduction, John Haigh provides a brief account of probability theory; explaining the philosophical approaches, discussing probability distributions, and looking its applications in science and economics.

The Theory That Would Not Die

The Theory That Would Not Die PDF Author: Sharon Bertsch McGrayne
Publisher: Yale University Press
ISBN: 0300175094
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
"This account of how a once reviled theory, Baye’s rule, came to underpin modern life is both approachable and engrossing" (Sunday Times). A New York Times Book Review Editors’ Choice Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok. In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the generations-long human drama surrounding it. McGrayne traces the rule’s discovery by an 18th century amateur mathematician through its development by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—while practitioners relied on it to solve crises involving great uncertainty and scanty information, such as Alan Turing's work breaking Germany's Enigma code during World War II. McGrayne also explains how the advent of computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security. Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

High-Dimensional Probability

High-Dimensional Probability PDF Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299

Get Book Here

Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.