Author: Dr Sangeetha muthuraman, Dr V prasannavenkatesan
Publisher: Archers & Elevators Publishing House
ISBN: 8194624576
Category : Antiques & Collectibles
Languages : en
Pages :
Book Description
A Generic Hyper Heuristic model using bio inspiration for solving combinatorial optimization problems
Author: Dr Sangeetha muthuraman, Dr V prasannavenkatesan
Publisher: Archers & Elevators Publishing House
ISBN: 8194624576
Category : Antiques & Collectibles
Languages : en
Pages :
Book Description
Publisher: Archers & Elevators Publishing House
ISBN: 8194624576
Category : Antiques & Collectibles
Languages : en
Pages :
Book Description
Heuristics and Hyper-Heuristics
Author: Javier Del Ser Lorente
Publisher: BoD – Books on Demand
ISBN: 9535133837
Category : Computers
Languages : en
Pages : 137
Book Description
In the last few years, the society is witnessing ever-growing levels of complexity in the optimization paradigms lying at the core of different applications and processes. This augmented complexity has motivated the adoption of heuristic methods as a means to balance the Pareto trade-off between computational efficiency and the quality of the produced solutions to the problem at hand. The momentum gained by heuristics in practical applications spans further towards hyper-heuristics, which allow constructing ensembles of simple heuristics to handle efficiently several problems of a single class. In this context, this short book compiles selected applications of heuristics and hyper-heuristics for combinatorial optimization problems, including scheduling and other assorted application scenarios.
Publisher: BoD – Books on Demand
ISBN: 9535133837
Category : Computers
Languages : en
Pages : 137
Book Description
In the last few years, the society is witnessing ever-growing levels of complexity in the optimization paradigms lying at the core of different applications and processes. This augmented complexity has motivated the adoption of heuristic methods as a means to balance the Pareto trade-off between computational efficiency and the quality of the produced solutions to the problem at hand. The momentum gained by heuristics in practical applications spans further towards hyper-heuristics, which allow constructing ensembles of simple heuristics to handle efficiently several problems of a single class. In this context, this short book compiles selected applications of heuristics and hyper-heuristics for combinatorial optimization problems, including scheduling and other assorted application scenarios.
Advances in Bio-inspired Computing for Combinatorial Optimization Problems
Author: Camelia-Mihaela Pintea
Publisher: Springer Science & Business Media
ISBN: 3642401791
Category : Technology & Engineering
Languages : en
Pages : 189
Book Description
"Advances in Bio-inspired Combinatorial Optimization Problems" illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems. Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed. Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive ants; virtual sensitive robots; ant-based techniques for static and dynamic routing problems; stigmergic collaborative agents and learning sensitive agents. This monograph is useful for researchers, students and all people interested in the recent natural computing frameworks. The reader is presumed to have knowledge of combinatorial optimization, graph theory, algorithms and programming. The book should furthermore allow readers to acquire ideas, concepts and models to use and develop new software for solving complex real-life problems.
Publisher: Springer Science & Business Media
ISBN: 3642401791
Category : Technology & Engineering
Languages : en
Pages : 189
Book Description
"Advances in Bio-inspired Combinatorial Optimization Problems" illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems. Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed. Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive ants; virtual sensitive robots; ant-based techniques for static and dynamic routing problems; stigmergic collaborative agents and learning sensitive agents. This monograph is useful for researchers, students and all people interested in the recent natural computing frameworks. The reader is presumed to have knowledge of combinatorial optimization, graph theory, algorithms and programming. The book should furthermore allow readers to acquire ideas, concepts and models to use and develop new software for solving complex real-life problems.
Nature-Inspired Computation and Swarm Intelligence
Author: Xin-She Yang
Publisher: Academic Press
ISBN: 0128197145
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.
Publisher: Academic Press
ISBN: 0128197145
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1208
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1208
Book Description
Metaheuristics
Author: El-Ghazali Talbi
Publisher: John Wiley & Sons
ISBN: 0470496908
Category : Computers
Languages : en
Pages : 625
Book Description
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 0470496908
Category : Computers
Languages : en
Pages : 625
Book Description
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
Search and Optimization by Metaheuristics
Author: Ke-Lin Du
Publisher: Birkhäuser
ISBN: 3319411926
Category : Computers
Languages : en
Pages : 437
Book Description
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.
Publisher: Birkhäuser
ISBN: 3319411926
Category : Computers
Languages : en
Pages : 437
Book Description
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.
Bio-inspired Computing Models And Algorithms
Author: Tao Song
Publisher: World Scientific
ISBN: 9813143193
Category : Computers
Languages : en
Pages : 299
Book Description
Bio-inspired computing (BIC) focuses on the designs and developments of computer algorithms and models based on biological mechanisms and living phenomena. It is now a major subfield of natural computation that leverages on the recent advances in computer science, biology and mathematics.The ideas provide abundant inspiration to construct high-performance computing models and intelligent algorithms, thus enabling powerful tools to solve real-life problems.Written by world-renowned researchers, this compendium covers the most influential topics on BIC, where the newly-obtained algorithms, developments and results are introduced and elaborated. The potential and valuable directions for further research are addressed as well.
Publisher: World Scientific
ISBN: 9813143193
Category : Computers
Languages : en
Pages : 299
Book Description
Bio-inspired computing (BIC) focuses on the designs and developments of computer algorithms and models based on biological mechanisms and living phenomena. It is now a major subfield of natural computation that leverages on the recent advances in computer science, biology and mathematics.The ideas provide abundant inspiration to construct high-performance computing models and intelligent algorithms, thus enabling powerful tools to solve real-life problems.Written by world-renowned researchers, this compendium covers the most influential topics on BIC, where the newly-obtained algorithms, developments and results are introduced and elaborated. The potential and valuable directions for further research are addressed as well.
Deep Learning and Parallel Computing Environment for Bioengineering Systems
Author: Arun Kumar Sangaiah
Publisher: Academic Press
ISBN: 0128172932
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data
Publisher: Academic Press
ISBN: 0128172932
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data
Nature-Inspired Optimization Algorithms
Author: Xin-She Yang
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277
Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277
Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm