A First Course in Order Statistics

A First Course in Order Statistics PDF Author: Barry C. Arnold
Publisher: SIAM
ISBN: 0898716489
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
This updated classic text will aid readers in understanding much of the current literature on order statistics: a flourishing field of study that is essential for any practising statistician and a vital part of the training for students in statistics. Written in a simple style that requires no advanced mathematical or statistical background, the book introduces the general theory of order statistics and their applications. The book covers topics such as distribution theory for order statistics from continuous and discrete populations, moment relations, bounds and approximations, order statistics in statistical inference and characterisation results, and basic asymptotic theory. There is also a short introduction to record values and related statistics. The authors have updated the text with suggestions for further reading that may be used for self-study. Written for advanced undergraduate and graduate students in statistics and mathematics, practising statisticians, engineers, climatologists, economists, and biologists.

A First Course in Order Statistics

A First Course in Order Statistics PDF Author: Barry C. Arnold
Publisher: SIAM
ISBN: 0898716489
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
This updated classic text will aid readers in understanding much of the current literature on order statistics: a flourishing field of study that is essential for any practising statistician and a vital part of the training for students in statistics. Written in a simple style that requires no advanced mathematical or statistical background, the book introduces the general theory of order statistics and their applications. The book covers topics such as distribution theory for order statistics from continuous and discrete populations, moment relations, bounds and approximations, order statistics in statistical inference and characterisation results, and basic asymptotic theory. There is also a short introduction to record values and related statistics. The authors have updated the text with suggestions for further reading that may be used for self-study. Written for advanced undergraduate and graduate students in statistics and mathematics, practising statisticians, engineers, climatologists, economists, and biologists.

Order Statistics

Order Statistics PDF Author: Herbert A. David
Publisher: John Wiley & Sons
ISBN: 0471654019
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
This volume provides an up-to-date coverage of the theory and applications of ordered random variables and their functions. Furthermore, it develops the distribution theory of OS systematically. Applications include procedures for the treatment of outliers and other data analysis techniques. Even when chapter and section headings are the same as in OSII, there are appreciable changes, mostly additions, with some obvious deletions. Parts of old Ch. 7, for example, are prime candidates for omission. Appendices are designed to help collate tables, computer algorithms, and software, as well as to compile related monographs on the subject matter. Extensive exercise sets will continue, many of them replaced by newer ones.

A Casebook for a First Course in Statistics and Data Analysis

A Casebook for a First Course in Statistics and Data Analysis PDF Author: Samprit Chatterjee
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
Containing 61 cases studies from business, the media and the natural and social sciences, this text is organized by broad applicational areas: data analysis; applied probability; inference; and regression models.

Statistics for Mathematicians

Statistics for Mathematicians PDF Author: Victor M. Panaretos
Publisher: Birkhäuser
ISBN: 3319283413
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students.

The Book of R

The Book of R PDF Author: Tilman M. Davies
Publisher: No Starch Press
ISBN: 1593276516
Category : Computers
Languages : en
Pages : 833

Get Book Here

Book Description
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.

A First Course in Bayesian Statistical Methods

A First Course in Bayesian Statistical Methods PDF Author: Peter D. Hoff
Publisher: Springer Science & Business Media
ISBN: 0387924078
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

All of Statistics

All of Statistics PDF Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

A Course in Mathematical Statistics

A Course in Mathematical Statistics PDF Author: George G. Roussas
Publisher: Elsevier
ISBN: 0080493149
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
A Course in Mathematical Statistics, Second Edition, contains enough material for a year-long course in probability and statistics for advanced undergraduate or first-year graduate students, or it can be used independently for a one-semester (or even one-quarter) course in probability alone. It bridges the gap between high and intermediate level texts so students without a sophisticated mathematical background can assimilate a fairly broad spectrum of the theorems and results from mathematical statistics. The coverage is extensive, and consists of probability and distribution theory, and statistical inference.* Contains 25% new material* Includes the most complete coverage of sufficiency * Transformation of Random Vectors* Sufficiency / Completeness / Exponential Families* Order Statistics* Elements of Nonparametric Density Estimation* Analysis of Variance (ANOVA)* Regression Analysis* Linear Models

A First Course in Probability and Statistics

A First Course in Probability and Statistics PDF Author: B. L. S. Prakasa Rao
Publisher: World Scientific
ISBN: 9812836535
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
This book provides a clear exposition of the theory of probability along with applications in statistics.

Probability Theory

Probability Theory PDF Author: Werner Linde
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110466198
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
This book is intended as an introduction to Probability Theory and Mathematical Statistics for students in mathematics, the physical sciences, engineering, and related fields. It is based on the author’s 25 years of experience teaching probability and is squarely aimed at helping students overcome common difficulties in learning the subject. The focus of the book is an explanation of the theory, mainly by the use of many examples. Whenever possible, proofs of stated results are provided. All sections conclude with a short list of problems. The book also includes several optional sections on more advanced topics. This textbook would be ideal for use in a first course in Probability Theory. Contents: Probabilities Conditional Probabilities and Independence Random Variables and Their Distribution Operations on Random Variables Expected Value, Variance, and Covariance Normally Distributed Random Vectors Limit Theorems Mathematical Statistics Appendix Bibliography Index