Author: Orr Moshe Shalit
Publisher: CRC Press
ISBN: 1498771629
Category : Mathematics
Languages : en
Pages : 257
Book Description
Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.
A First Course in Functional Analysis
Author: Orr Moshe Shalit
Publisher: CRC Press
ISBN: 1498771629
Category : Mathematics
Languages : en
Pages : 257
Book Description
Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.
Publisher: CRC Press
ISBN: 1498771629
Category : Mathematics
Languages : en
Pages : 257
Book Description
Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.
A First Course in Functional Analysis
Author: Martin Davis
Publisher: Courier Corporation
ISBN: 0486315819
Category : Mathematics
Languages : en
Pages : 129
Book Description
Designed for undergraduate mathematics majors, this self-contained exposition of Gelfand's proof of Wiener's theorem explores set theoretic preliminaries, normed linear spaces and algebras, functions on Banach spaces, homomorphisms on normed linear spaces, and more. 1966 edition.
Publisher: Courier Corporation
ISBN: 0486315819
Category : Mathematics
Languages : en
Pages : 129
Book Description
Designed for undergraduate mathematics majors, this self-contained exposition of Gelfand's proof of Wiener's theorem explores set theoretic preliminaries, normed linear spaces and algebras, functions on Banach spaces, homomorphisms on normed linear spaces, and more. 1966 edition.
A Course in Functional Analysis
Author: John B Conway
Publisher: Springer
ISBN: 1475743831
Category : Mathematics
Languages : en
Pages : 416
Book Description
This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS
Publisher: Springer
ISBN: 1475743831
Category : Mathematics
Languages : en
Pages : 416
Book Description
This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS
A First Course in Functional Analysis
Author: Caspar Goffman
Publisher: American Mathematical Soc.
ISBN: 1470429691
Category : Mathematics
Languages : en
Pages : 297
Book Description
This second edition includes exercises at the end of each chapter, revised bibliographies, references and an index.
Publisher: American Mathematical Soc.
ISBN: 1470429691
Category : Mathematics
Languages : en
Pages : 297
Book Description
This second edition includes exercises at the end of each chapter, revised bibliographies, references and an index.
A First Course in Functional Analysis
Author: Rabindranath Sen
Publisher: Anthem Press
ISBN: 1783083247
Category : Mathematics
Languages : en
Pages : 486
Book Description
This book provides the reader with a comprehensive introduction to functional analysis. Topics include normed linear and Hilbert spaces, the Hahn-Banach theorem, the closed graph theorem, the open mapping theorem, linear operator theory, the spectral theory, and a brief introduction to the Lebesgue measure. The book explains the motivation for the development of these theories, and applications that illustrate the theories in action. Applications in optimal control theory, variational problems, wavelet analysis and dynamical systems are also highlighted. ‘A First Course in Functional Analysis’ will serve as a ready reference to students not only of mathematics, but also of allied subjects in applied mathematics, physics, statistics and engineering.
Publisher: Anthem Press
ISBN: 1783083247
Category : Mathematics
Languages : en
Pages : 486
Book Description
This book provides the reader with a comprehensive introduction to functional analysis. Topics include normed linear and Hilbert spaces, the Hahn-Banach theorem, the closed graph theorem, the open mapping theorem, linear operator theory, the spectral theory, and a brief introduction to the Lebesgue measure. The book explains the motivation for the development of these theories, and applications that illustrate the theories in action. Applications in optimal control theory, variational problems, wavelet analysis and dynamical systems are also highlighted. ‘A First Course in Functional Analysis’ will serve as a ready reference to students not only of mathematics, but also of allied subjects in applied mathematics, physics, statistics and engineering.
An Introductory Course in Functional Analysis
Author: Adam Bowers
Publisher: Springer
ISBN: 1493919458
Category : Mathematics
Languages : en
Pages : 242
Book Description
Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn–Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman–Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study.
Publisher: Springer
ISBN: 1493919458
Category : Mathematics
Languages : en
Pages : 242
Book Description
Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn–Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman–Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study.
A First Course in Functional Analysis
Author: Dorairaj Somasundaram
Publisher: Alpha Science International, Limited
ISBN:
Category : Computers
Languages : en
Pages : 418
Book Description
"A First Course in Functional Analysis lucidly covers Banach Spaces. Continuous linear functionals, the basic theorems of bounded linear operators, Hilbert spaces, Operators on Hilbert spaces. Spectral theory and Banach Algebras usually taught as a core course to post-graduate students in mathematics. The special distinguishing features of the book include the establishment of the spectral theorem for the compact normal operators in the infinite dimensional case exactly in the same form as in the finite dimensional case and a detailed treatment of the theory of Banach algebras leading to the proof of the Gelfand-Neumark structure theorem for Banach algebras."--BOOK JACKET.
Publisher: Alpha Science International, Limited
ISBN:
Category : Computers
Languages : en
Pages : 418
Book Description
"A First Course in Functional Analysis lucidly covers Banach Spaces. Continuous linear functionals, the basic theorems of bounded linear operators, Hilbert spaces, Operators on Hilbert spaces. Spectral theory and Banach Algebras usually taught as a core course to post-graduate students in mathematics. The special distinguishing features of the book include the establishment of the spectral theorem for the compact normal operators in the infinite dimensional case exactly in the same form as in the finite dimensional case and a detailed treatment of the theory of Banach algebras leading to the proof of the Gelfand-Neumark structure theorem for Banach algebras."--BOOK JACKET.
A First Course in Functional Analysis
Author: S. David Promislow
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 336
Book Description
Requiring only a preliminary knowledge of elementary linear algebra and real analysis, this book provides an introduction to the basic principles and practical applications of functional analysis. Based on the author's own class-tested material, the book uses clear language to explain the major concepts of functional analysis. As opposed to simply presenting the proofs, the author outlines the logic behind the steps, demonstrates the development of arguments, and discusses how the concepts are connected to one another. Each chapter concludes ...
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 336
Book Description
Requiring only a preliminary knowledge of elementary linear algebra and real analysis, this book provides an introduction to the basic principles and practical applications of functional analysis. Based on the author's own class-tested material, the book uses clear language to explain the major concepts of functional analysis. As opposed to simply presenting the proofs, the author outlines the logic behind the steps, demonstrates the development of arguments, and discusses how the concepts are connected to one another. Each chapter concludes ...
Beginning Functional Analysis
Author: Karen Saxe
Publisher: Springer Science & Business Media
ISBN: 1475736878
Category : Mathematics
Languages : en
Pages : 209
Book Description
The unifying approach of functional analysis is to view functions as points in abstract vector space and the differential and integral operators as linear transformations on these spaces. The author's goal is to present the basics of functional analysis in a way that makes them comprehensible to a student who has completed courses in linear algebra and real analysis, and to develop the topics in their historical contexts.
Publisher: Springer Science & Business Media
ISBN: 1475736878
Category : Mathematics
Languages : en
Pages : 209
Book Description
The unifying approach of functional analysis is to view functions as points in abstract vector space and the differential and integral operators as linear transformations on these spaces. The author's goal is to present the basics of functional analysis in a way that makes them comprehensible to a student who has completed courses in linear algebra and real analysis, and to develop the topics in their historical contexts.
A First Course in Analysis
Author: John B. Conway
Publisher: Cambridge University Press
ISBN: 1107173140
Category : Mathematics
Languages : en
Pages : 357
Book Description
This concise text clearly presents the material needed for year-long analysis courses for advanced undergraduates or beginning graduates.
Publisher: Cambridge University Press
ISBN: 1107173140
Category : Mathematics
Languages : en
Pages : 357
Book Description
This concise text clearly presents the material needed for year-long analysis courses for advanced undergraduates or beginning graduates.