Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781730766831
Category :
Languages : en
Pages : 72
Book Description
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers. Reddy, K. C. and Reddy, J. N. and Nayani, S. Unspecified Center...
A Finite Element Solver for 3-D Compressible Viscous Flows
Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781730766831
Category :
Languages : en
Pages : 72
Book Description
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers. Reddy, K. C. and Reddy, J. N. and Nayani, S. Unspecified Center...
Publisher:
ISBN: 9781730766831
Category :
Languages : en
Pages : 72
Book Description
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers. Reddy, K. C. and Reddy, J. N. and Nayani, S. Unspecified Center...
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1102
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1102
Book Description
Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
Author: Ben Q. Li
Publisher: Springer Science & Business Media
ISBN: 1846282055
Category : Technology & Engineering
Languages : en
Pages : 587
Book Description
Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.
Publisher: Springer Science & Business Media
ISBN: 1846282055
Category : Technology & Engineering
Languages : en
Pages : 587
Book Description
Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.
Monthly Catalog of United States Government Publications
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1042
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1042
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 812
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 812
Book Description
Monthly Catalogue, United States Public Documents
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1250
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1250
Book Description
The finite element method in the 1990’s
Author: Eugenio Onate
Publisher: Springer Science & Business Media
ISBN: 3662103265
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
Edited on the occasion of Prof. Olgierd C. Zienkiewicz' 70th birthday, this book contains original contributions from eminent scientists dealing with a wide range of theoretical aspects of the Finite Element Method and its application to a variety of engineering problems. The book provides an overview of the state-of-the-art of finite element technology in the last decade of the 20th century.
Publisher: Springer Science & Business Media
ISBN: 3662103265
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
Edited on the occasion of Prof. Olgierd C. Zienkiewicz' 70th birthday, this book contains original contributions from eminent scientists dealing with a wide range of theoretical aspects of the Finite Element Method and its application to a variety of engineering problems. The book provides an overview of the state-of-the-art of finite element technology in the last decade of the 20th century.
Applied mechanics reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Proceedings of the ... International Conference on Finite Element Methods in Flow Problems
Author:
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 1624
Book Description
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 1624
Book Description
Applied Computational Fluid Dynamics Techniques
Author: Rainald Löhner
Publisher: John Wiley & Sons
ISBN: 9780470989661
Category : Science
Languages : en
Pages : 544
Book Description
Computational fluid dynamics (CFD) is concerned with the efficient numerical solution of the partial differential equations that describe fluid dynamics. CFD techniques are commonly used in the many areas of engineering where fluid behavior is an important factor. Traditional fields of application include aerospace and automotive design, and more recently, bioengineering and consumer and medical electronics. With Applied Computational Fluid Dynamics Techniques, 2nd edition, Rainald Löhner introduces the reader to the techniques required to achieve efficient CFD solvers, forming a bridge between basic theoretical and algorithmic aspects of the finite element method and its use in an industrial context where methods have to be both as simple but also as robust as possible. This heavily revised second edition takes a practice-oriented approach with a strong emphasis on efficiency, and offers important new and updated material on; Overlapping and embedded grid methods Treatment of free surfaces Grid generation Optimal use of supercomputing hardware Optimal shape and process design Applied Computational Fluid Dynamics Techniques, 2nd edition is a vital resource for engineers, researchers and designers working on CFD, aero and hydrodynamics simulations and bioengineering. Its unique practical approach will also appeal to graduate students of fluid mechanics and aero and hydrodynamics as well as biofluidics.
Publisher: John Wiley & Sons
ISBN: 9780470989661
Category : Science
Languages : en
Pages : 544
Book Description
Computational fluid dynamics (CFD) is concerned with the efficient numerical solution of the partial differential equations that describe fluid dynamics. CFD techniques are commonly used in the many areas of engineering where fluid behavior is an important factor. Traditional fields of application include aerospace and automotive design, and more recently, bioengineering and consumer and medical electronics. With Applied Computational Fluid Dynamics Techniques, 2nd edition, Rainald Löhner introduces the reader to the techniques required to achieve efficient CFD solvers, forming a bridge between basic theoretical and algorithmic aspects of the finite element method and its use in an industrial context where methods have to be both as simple but also as robust as possible. This heavily revised second edition takes a practice-oriented approach with a strong emphasis on efficiency, and offers important new and updated material on; Overlapping and embedded grid methods Treatment of free surfaces Grid generation Optimal use of supercomputing hardware Optimal shape and process design Applied Computational Fluid Dynamics Techniques, 2nd edition is a vital resource for engineers, researchers and designers working on CFD, aero and hydrodynamics simulations and bioengineering. Its unique practical approach will also appeal to graduate students of fluid mechanics and aero and hydrodynamics as well as biofluidics.