A Course in Ring Theory

A Course in Ring Theory PDF Author: Donald S. Passman
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index

A Course in Ring Theory

A Course in Ring Theory PDF Author: Donald S. Passman
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index

Introduction to Ring Theory

Introduction to Ring Theory PDF Author: Paul M. Cohn
Publisher: Springer Science & Business Media
ISBN: 1447104757
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
A clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product, Tensor product and rings of fractions, followed by a description of free rings. Readers are assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.

A First Course in Noncommutative Rings

A First Course in Noncommutative Rings PDF Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 1468404067
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.

Ring and Module Theory

Ring and Module Theory PDF Author: Toma Albu
Publisher: Springer Science & Business Media
ISBN: 3034600070
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.

Exercises in Classical Ring Theory

Exercises in Classical Ring Theory PDF Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 1475739877
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
Based in large part on the comprehensive "First Course in Ring Theory" by the same author, this book provides a comprehensive set of problems and solutions in ring theory that will serve not only as a teaching aid to instructors using that book, but also for students, who will see how ring theory theorems are applied to solving ring-theoretic problems and how good proofs are written. The author demonstrates that problem-solving is a lively process: in "Comments" following many solutions he discusses what happens if a hypothesis is removed, whether the exercise can be further generalized, what would be a concrete example for the exercise, and so forth. The book is thus much more than a solution manual.

A First Course in Rings and Ideals

A First Course in Rings and Ideals PDF Author: David M. Burton
Publisher: Addison-Wesley
ISBN:
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description


The Theory of Rings

The Theory of Rings PDF Author: Nathan Jacobson
Publisher: American Mathematical Soc.
ISBN: 0821815024
Category : Mathematics
Languages : en
Pages : 160

Get Book Here

Book Description
The book is mainly concerned with the theory of rings in which both maximal and minimal conditions hold for ideals (except in the last chapter, where rings of the type of a maximal order in an algebra are considered). The central idea consists of representing rings as rings of endomorphisms of an additive group, which can be achieved by means of the regular representation.

Topics in Ring Theory

Topics in Ring Theory PDF Author: I. N. Herstein
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 156

Get Book Here

Book Description


Lectures on Modules and Rings

Lectures on Modules and Rings PDF Author: Tsit-Yuen Lam
Publisher: Springer Science & Business Media
ISBN: 1461205255
Category : Mathematics
Languages : en
Pages : 577

Get Book Here

Book Description
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.

Algebra: Chapter 0

Algebra: Chapter 0 PDF Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713

Get Book Here

Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.