A Concise Introduction to the Theory of Numbers

A Concise Introduction to the Theory of Numbers PDF Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 9780521286541
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description
In this book, Professor Baker describes the rudiments of number theory in a concise, simple and direct manner.

A Concise Introduction to the Theory of Numbers

A Concise Introduction to the Theory of Numbers PDF Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 9780521286541
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description
In this book, Professor Baker describes the rudiments of number theory in a concise, simple and direct manner.

A Concise Introduction to the Theory of Numbers

A Concise Introduction to the Theory of Numbers PDF Author: Alan Baker
Publisher:
ISBN: 9783521286542
Category : Nombres, Théorie des
Languages : en
Pages : 95

Get Book Here

Book Description


A Comprehensive Course in Number Theory

A Comprehensive Course in Number Theory PDF Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 1139560824
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements of cryptography and primality testing, an account of number fields in the classical vein including properties of their units, ideals and ideal classes, aspects of analytic number theory including studies of the Riemann zeta-function, the prime-number theorem and primes in arithmetical progressions, a description of the Hardy–Littlewood and sieve methods from respectively additive and multiplicative number theory and an exposition of the arithmetic of elliptic curves. The book includes many worked examples, exercises and further reading. Its wider coverage and versatility make this book suitable for courses extending from the elementary to beginning graduate studies.

An Illustrated Theory of Numbers

An Illustrated Theory of Numbers PDF Author: Martin H. Weissman
Publisher: American Mathematical Soc.
ISBN: 1470463717
Category : Education
Languages : en
Pages : 341

Get Book Here

Book Description
News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.

A Concise Introduction to Pure Mathematics

A Concise Introduction to Pure Mathematics PDF Author: Martin Liebeck
Publisher: CRC Press
ISBN: 1315360713
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.

A Concise Introduction to the Theory of Integration

A Concise Introduction to the Theory of Integration PDF Author: Daniel W. Stroock
Publisher: Springer Science & Business Media
ISBN: 9780817640736
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
Designed for the analyst, physicist, engineer, or economist, provides such readers with most of the measure theory they will ever need. Emphasis is on the concrete aspects of the subject. Subjects include classical theory, Lebesgue's measure, Lebesgue integration, products of measures, changes of variable, some basic inequalities, and abstract theory. Annotation copyright by Book News, Inc., Portland, OR

The Theory of Algebraic Numbers: Second Edition

The Theory of Algebraic Numbers: Second Edition PDF Author: Harry Pollard
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.

Elements of Number Theory

Elements of Number Theory PDF Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387217355
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.

The Theory of Numbers

The Theory of Numbers PDF Author: Andrew Adler
Publisher: Jones & Bartlett Publishers
ISBN:
Category : Mathematics
Languages : en
Pages : 424

Get Book Here

Book Description


A Classical Introduction to Modern Number Theory

A Classical Introduction to Modern Number Theory PDF Author: K. Ireland
Publisher: Springer Science & Business Media
ISBN: 1475717792
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.