A Computational Investigation of Three Turbulent Flow Problems

A Computational Investigation of Three Turbulent Flow Problems PDF Author: Pradeep C. Babu Salapakkam
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Get Book Here

Book Description

A Computational Investigation of Three Turbulent Flow Problems

A Computational Investigation of Three Turbulent Flow Problems PDF Author: Pradeep C. Babu Salapakkam
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Get Book Here

Book Description


Research Directions in Computational Mechanics

Research Directions in Computational Mechanics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145

Get Book Here

Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Turbulent Flow Computation

Turbulent Flow Computation PDF Author: D. Drikakis
Publisher: Springer Science & Business Media
ISBN: 0306484218
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
In various branches of fluid mechanics, our understanding is inhibited by the presence of turbulence. Although many experimental and theoretical studies have significantly helped to increase our physical understanding, a comp- hensive and predictive theory of turbulent flows has not yet been established. Therefore, the prediction of turbulent flow relies heavily on simulation stra- gies. The development of reliable methods for turbulent flow computation will have a significant impact on a variety of technological advancements. These range from aircraft and car design, to turbomachinery, combustors, and process engineering. Moreover, simulation approaches are important in materials - sign, prediction of biologically relevant flows, and also significantly contribute to the understanding of environmental processes including weather and climate forecasting. The material that is compiled in this book presents a coherent account of contemporary computational approaches for turbulent flows. It aims to p- vide the reader with information about the current state of the art as well as to stimulate directions for future research and development. The book puts part- ular emphasis on computational methods for incompressible and compressible turbulent flows as well as on methods for analysing and quantifying nume- cal errors in turbulent flow computations. In addition, it presents turbulence modelling approaches in the context of large eddy simulation, and unfolds the challenges in the field of simulations for multiphase flows and computational fluid dynamics (CFD) of engineering flows in complex geometries. Apart from reviewing main research developments, new material is also included in many of the chapters.

Experimental and Numerical Investigation of Developing Turbulent Flow Over a Wavy Wall

Experimental and Numerical Investigation of Developing Turbulent Flow Over a Wavy Wall PDF Author: Vinicius Martins Segunda
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Turbulent flow over a wavy wall in a horizontal channel is investigated by experimental and numerical methods. The thorough problem understanding can advance turbulent flow physics knowledge for separating and reattaching flows. Another important consideration is the performance evaluation of mathematical models used in computational fluid dynamics (CFD) codes to predict the flow characteristics. This study explores numerical models because they are critically important to the design and performance evaluation of engineering systems. The experimental data are obtained to provide repository data and more insights into the flow physics considering both the flow development and fully periodic regions. A channel with a wavy bottom wall is considered for this study, and its main characteristic is a value of 10 for the ratio between the wave length and wave amplitude. A high-resolution particle image velocimetry (PIV) system is used to obtain detailed measurements of velocity at Reynolds number of 5040, 8400, 10700 and 13040 in both the developing and fully periodic regions. The numerical simulations are performed with a commercial CFD code using four eddy viscosity turbulence models and three Second-Moment Closure (SMC) turbulence models. This work assessed the predictive accuracy of a total of seven turbulence models. The experimental study covered a lack of data for the flow development within the waves, prior the periodic condition region, and it supported the turbulence models evaluation. The experiments provided features of the flow such as the recirculation regions, Reynolds stresses, and turbulent kinetic energy production at different channel locations. A comprehensive comparison between models and experimental data revealed a significant dependency on the turbulence model formulation and on the wall treatment selection for the flow development and fully periodic regions predictions.

Turbulence and Coherent Structures

Turbulence and Coherent Structures PDF Author: O. Métais
Publisher: Springer Science & Business Media
ISBN: 9401579040
Category : Technology & Engineering
Languages : en
Pages : 612

Get Book Here

Book Description
In the last 25 years, one of the most striking advances in Fluid Mecha nics was certainly the discovery of coherent structures in turbulence: lab oratory experiments and numerical simulations have shown that most turbulent flows exhibit both spatially-organized large-scale structures and disorganized motions, generally at smaller scales. The develop ment of new measurement and visualization techniques have allowed a more precise characterization and investigation of these structures in the laboratory. Thanks to the unprecedented increase of computer power and to the development of efficient interactive three-dimensional colour graphics, computational fluid dynamicists can explore the still myste rious world of turbulence. However, many problems remain unsolved concerning the origin of these structures, their dynamics, and their in teraction with the disorganized motions. In this book will be found the latest results of experimentalists, theoreticians and numerical modellers interested in these topics. These coherent structures may appear on airplane wings or slender bodies, mixing layers, jets, wakes or boundary-layers. In free-shear flows and in boundary layers, the results presented here highlight the intense three-dimensional character of the vortices. The two-dimensional large scale eddies are very sensitive to three-dimensional perturbations, whose amplification leads to the formation of three-dimensional coherent vorti cal structures, such as streamwise, hairpin or horseshoe vortex filaments. This book focuses on modern aspects of turbulence study. Relations between turbulence theory and optimal control theory in mathematics are discussed. This may have important applications with regard to, e. g. , numerical weather forecasting.

A Parallel Finite Volume Algorithm for Large-eddy Simulation of Turbulent Flows

A Parallel Finite Volume Algorithm for Large-eddy Simulation of Turbulent Flows PDF Author: Trong T. Bui
Publisher:
ISBN:
Category : Parallel computers
Languages : en
Pages : 28

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704

Get Book Here

Book Description


Computational Studies of Three Dimensional Flows Using the Reduced Navier Stokes Equations

Computational Studies of Three Dimensional Flows Using the Reduced Navier Stokes Equations PDF Author: Roger Cohen
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 227

Get Book Here

Book Description


Turbulent Flows

Turbulent Flows PDF Author: Jean Piquet
Publisher: Springer Science & Business Media
ISBN: 9783540654117
Category : Technology & Engineering
Languages : en
Pages : 778

Get Book Here

Book Description
obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.

Computational Fluid Dynamics

Computational Fluid Dynamics PDF Author: Jiyuan Tu
Publisher: Butterworth-Heinemann
ISBN: 0081012446
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. Includes a new chapter on practical guidelines for mesh generation Provides full coverage of high-pressure fluid dynamics and the meshless approach to provide a broader overview of the application areas where CFD can be used Includes online resources with a new bonus chapter featuring detailed case studies and the latest developments in CFD