Author: Rick Spair
Publisher: Rick Spair
ISBN:
Category : Computers
Languages : en
Pages : 98
Book Description
Artificial Intelligence (AI) and Machine Learning (ML) are transforming industries, revolutionizing how businesses make decisions, automate processes, and provide innovative products and services. Yet, the successful implementation of AI and ML goes beyond developing sophisticated models. It requires the seamless integration of these models into operational workflows, ensuring their reliability, scalability, security, and ethical compliance. This integration is the heart of Machine Learning Operations or MLOps. This comprehensive guide is your passport to understanding the intricate world of MLOps. Whether you are an aspiring data scientist, a seasoned machine learning engineer, an operations professional, or a business leader, this guide is designed to equip you with the knowledge and insights needed to navigate the complexities of MLOps effectively.
A Comprehensive Guide to Machine Learning Operations (MLOps)
Introducing MLOps
Author: Mark Treveil
Publisher: "O'Reilly Media, Inc."
ISBN: 1098116429
Category : Computers
Languages : en
Pages : 171
Book Description
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Publisher: "O'Reilly Media, Inc."
ISBN: 1098116429
Category : Computers
Languages : en
Pages : 171
Book Description
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Engineering MLOps
Author: Emmanuel Raj
Publisher: Packt Publishing Ltd
ISBN: 1800566328
Category : Computers
Languages : en
Pages : 370
Book Description
Get up and running with machine learning life cycle management and implement MLOps in your organization Key FeaturesBecome well-versed with MLOps techniques to monitor the quality of machine learning models in productionExplore a monitoring framework for ML models in production and learn about end-to-end traceability for deployed modelsPerform CI/CD to automate new implementations in ML pipelinesBook Description Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you'll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You'll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you'll apply the knowledge you've gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization. What you will learnFormulate data governance strategies and pipelines for ML training and deploymentGet to grips with implementing ML pipelines, CI/CD pipelines, and ML monitoring pipelinesDesign a robust and scalable microservice and API for test and production environmentsCurate your custom CD processes for related use cases and organizationsMonitor ML models, including monitoring data drift, model drift, and application performanceBuild and maintain automated ML systemsWho this book is for This MLOps book is for data scientists, software engineers, DevOps engineers, machine learning engineers, and business and technology leaders who want to build, deploy, and maintain ML systems in production using MLOps principles and techniques. Basic knowledge of machine learning is necessary to get started with this book.
Publisher: Packt Publishing Ltd
ISBN: 1800566328
Category : Computers
Languages : en
Pages : 370
Book Description
Get up and running with machine learning life cycle management and implement MLOps in your organization Key FeaturesBecome well-versed with MLOps techniques to monitor the quality of machine learning models in productionExplore a monitoring framework for ML models in production and learn about end-to-end traceability for deployed modelsPerform CI/CD to automate new implementations in ML pipelinesBook Description Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you'll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You'll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you'll apply the knowledge you've gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization. What you will learnFormulate data governance strategies and pipelines for ML training and deploymentGet to grips with implementing ML pipelines, CI/CD pipelines, and ML monitoring pipelinesDesign a robust and scalable microservice and API for test and production environmentsCurate your custom CD processes for related use cases and organizationsMonitor ML models, including monitoring data drift, model drift, and application performanceBuild and maintain automated ML systemsWho this book is for This MLOps book is for data scientists, software engineers, DevOps engineers, machine learning engineers, and business and technology leaders who want to build, deploy, and maintain ML systems in production using MLOps principles and techniques. Basic knowledge of machine learning is necessary to get started with this book.
Ultimate MLOps for Machine Learning Models
Author: Saurabh Dorle
Publisher: Orange Education Pvt Ltd
ISBN: 8197651205
Category : Computers
Languages : en
Pages : 373
Book Description
TAGLINE The only MLOps guide you'll ever need KEY FEATURES ● Acquire a comprehensive understanding of the entire MLOps lifecycle, from model development to monitoring and governance. ● Gain expertise in building efficient MLOps pipelines with the help of practical guidance with real-world examples and case studies. ● Develop advanced skills to implement scalable solutions by understanding the latest trends/tools and best practices. DESCRIPTION This book is an essential resource for professionals aiming to streamline and optimize their machine learning operations. This comprehensive guide provides a thorough understanding of the MLOps life cycle, from model development and training to deployment and monitoring. By delving into the intricacies of each phase, the book equips readers with the knowledge and tools needed to create robust, scalable, and efficient machine learning workflows. Key chapters include a deep dive into essential MLOps tools and technologies, effective data pipeline management, and advanced model optimization techniques. The book also addresses critical aspects such as scalability challenges, data and model governance, and security in machine learning operations. Each topic is presented with practical insights and real-world case studies, enabling readers to apply best practices in their job roles. Whether you are a data scientist, ML engineer, or IT professional, this book empowers you to take your machine learning projects from concept to production with confidence. It equips you with the practical skills to ensure your models are reliable, secure, and compliant with regulations. By the end, you will be well-positioned to navigate the ever-evolving landscape of MLOps and unlock the true potential of your machine learning initiatives. WHAT WILL YOU LEARN ● Implement and manage end-to-end machine learning lifecycles. ● Utilize essential tools and technologies for MLOps effectively. ● Design and optimize data pipelines for efficient model training. ● Develop and train machine learning models with best practices. ● Deploy, monitor, and maintain models in production environments. ● Address scalability challenges and solutions in MLOps. ● Implement robust security practices to protect your ML systems. ● Ensure data governance, model compliance, and security in ML operations. ● Understand emerging trends in MLOps and stay ahead of the curve. WHO IS THIS BOOK FOR? This book is for data scientists, machine learning engineers, and data engineers aiming to master MLOps for effective model management in production. It’s also ideal for researchers and stakeholders seeking insights into how MLOps drives business strategy and scalability, as well as anyone with a basic grasp of Python and machine learning looking to enter the field of data science in production. TABLE OF CONTENTS 1. Introduction to MLOps 2. Understanding Machine Learning Lifecycle 3. Essential Tools and Technologies in MLOps 4. Data Pipelines and Management in MLOps 5. Model Development and Training 6. Model Optimization Techniques for Performance 7. Efficient Model Deployment and Monitoring Strategies 8. Scalability Challenges and Solutions in MLOps 9. Data, Model Governance, and Compliance in Production Environments 10. Security in Machine Learning Operations 11. Case Studies and Future Trends in MLOps Index
Publisher: Orange Education Pvt Ltd
ISBN: 8197651205
Category : Computers
Languages : en
Pages : 373
Book Description
TAGLINE The only MLOps guide you'll ever need KEY FEATURES ● Acquire a comprehensive understanding of the entire MLOps lifecycle, from model development to monitoring and governance. ● Gain expertise in building efficient MLOps pipelines with the help of practical guidance with real-world examples and case studies. ● Develop advanced skills to implement scalable solutions by understanding the latest trends/tools and best practices. DESCRIPTION This book is an essential resource for professionals aiming to streamline and optimize their machine learning operations. This comprehensive guide provides a thorough understanding of the MLOps life cycle, from model development and training to deployment and monitoring. By delving into the intricacies of each phase, the book equips readers with the knowledge and tools needed to create robust, scalable, and efficient machine learning workflows. Key chapters include a deep dive into essential MLOps tools and technologies, effective data pipeline management, and advanced model optimization techniques. The book also addresses critical aspects such as scalability challenges, data and model governance, and security in machine learning operations. Each topic is presented with practical insights and real-world case studies, enabling readers to apply best practices in their job roles. Whether you are a data scientist, ML engineer, or IT professional, this book empowers you to take your machine learning projects from concept to production with confidence. It equips you with the practical skills to ensure your models are reliable, secure, and compliant with regulations. By the end, you will be well-positioned to navigate the ever-evolving landscape of MLOps and unlock the true potential of your machine learning initiatives. WHAT WILL YOU LEARN ● Implement and manage end-to-end machine learning lifecycles. ● Utilize essential tools and technologies for MLOps effectively. ● Design and optimize data pipelines for efficient model training. ● Develop and train machine learning models with best practices. ● Deploy, monitor, and maintain models in production environments. ● Address scalability challenges and solutions in MLOps. ● Implement robust security practices to protect your ML systems. ● Ensure data governance, model compliance, and security in ML operations. ● Understand emerging trends in MLOps and stay ahead of the curve. WHO IS THIS BOOK FOR? This book is for data scientists, machine learning engineers, and data engineers aiming to master MLOps for effective model management in production. It’s also ideal for researchers and stakeholders seeking insights into how MLOps drives business strategy and scalability, as well as anyone with a basic grasp of Python and machine learning looking to enter the field of data science in production. TABLE OF CONTENTS 1. Introduction to MLOps 2. Understanding Machine Learning Lifecycle 3. Essential Tools and Technologies in MLOps 4. Data Pipelines and Management in MLOps 5. Model Development and Training 6. Model Optimization Techniques for Performance 7. Efficient Model Deployment and Monitoring Strategies 8. Scalability Challenges and Solutions in MLOps 9. Data, Model Governance, and Compliance in Production Environments 10. Security in Machine Learning Operations 11. Case Studies and Future Trends in MLOps Index
Machine Learning Design Patterns
Author: Valliappa Lakshmanan
Publisher: O'Reilly Media
ISBN: 1098115759
Category : Computers
Languages : en
Pages : 408
Book Description
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly
Publisher: O'Reilly Media
ISBN: 1098115759
Category : Computers
Languages : en
Pages : 408
Book Description
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly
Kubeflow Operations Guide
Author: Josh Patterson
Publisher: O'Reilly Media
ISBN: 1492053244
Category : Computers
Languages : en
Pages : 302
Book Description
Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support workflows from on-premises to cloud providers including Google, Amazon, and Microsoft. Dive into Kubeflow architecture and learn best practices for using the platform Understand the process of planning your Kubeflow deployment Install Kubeflow on an existing on-premises Kubernetes cluster Deploy Kubeflow on Google Cloud Platform step-by-step from the command line Use the managed Amazon Elastic Kubernetes Service (EKS) to deploy Kubeflow on AWS Deploy and manage Kubeflow across a network of Azure cloud data centers around the world Use KFServing to develop and deploy machine learning models
Publisher: O'Reilly Media
ISBN: 1492053244
Category : Computers
Languages : en
Pages : 302
Book Description
Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support workflows from on-premises to cloud providers including Google, Amazon, and Microsoft. Dive into Kubeflow architecture and learn best practices for using the platform Understand the process of planning your Kubeflow deployment Install Kubeflow on an existing on-premises Kubernetes cluster Deploy Kubeflow on Google Cloud Platform step-by-step from the command line Use the managed Amazon Elastic Kubernetes Service (EKS) to deploy Kubeflow on AWS Deploy and manage Kubeflow across a network of Azure cloud data centers around the world Use KFServing to develop and deploy machine learning models
AWS Certified Cloud Developer Associate
Author: Cybellium
Publisher: YouGuide Ltd
ISBN: 1836798776
Category : Computers
Languages : en
Pages : 235
Book Description
Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
Publisher: YouGuide Ltd
ISBN: 1836798776
Category : Computers
Languages : en
Pages : 235
Book Description
Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
AWS Certified AI & Machine Learning Specialist
Author: Cybellium
Publisher: YouGuide Ltd
ISBN: 1836798830
Category : Computers
Languages : en
Pages : 230
Book Description
Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
Publisher: YouGuide Ltd
ISBN: 1836798830
Category : Computers
Languages : en
Pages : 230
Book Description
Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
Microsoft Azure AI Fundamentals AI-900 Exam Guide
Author: Aaron Guilmette
Publisher: Packt Publishing Ltd
ISBN: 1835885675
Category : Computers
Languages : en
Pages : 288
Book Description
Get ready to pass the certification exam on your first attempt by gaining actionable insights into AI concepts, ML techniques, and Azure AI services covered in the latest AI-900 exam syllabus from two industry experts Key Features Discover Azure AI services, including computer vision, Auto ML, NLP, and OpenAI Explore AI use cases, such as image identification, chatbots, and more Work through 145 practice questions under chapter-end self-assessments and mock exams Purchase of this book unlocks access to web-based exam prep resources, including mock exams, flashcards, and exam tips Book Description The AI-900 exam helps you take your first step into an AI-shaped future. Regardless of your technical background, this book will help you test your understanding of the key AI-related topics and tools used to develop AI solutions in Azure cloud. This exam guide focuses on AI workloads, including natural language processing (NLP) and large language models (LLMs). You'll explore Microsoft's responsible AI principles like safety and accountability. Then, you'll cover the basics of machine learning (ML), including classification and deep learning, and learn how to use training and validation datasets with Azure ML. Using Azure AI Vision, face detection, and Video Indexer services, you'll get up to speed with computer vision-related topics like image classification, object detection, and facial detection. Later chapters cover NLP features such as key phrase extraction, sentiment analysis, and speech processing using Azure AI Language, speech, and translator services. The book also guides you through identifying GenAI models and leveraging Azure OpenAI Service for content generation. At the end of each chapter, you'll find chapter review questions with answers, provided as an online resource. By the end of this exam guide, you'll be able to work with AI solutions in Azure and pass the AI-900 exam using the online exam prep resources. What you will learn Discover various types of artificial intelligence (AI)workloads and services in Azure Cover Microsoft's guiding principles for responsible AI development and use Understand the fundamental principles of how AI and machine learning work Explore how AI models can recognize content in images and documents Gain insights into the features and use cases for natural language processing Explore the capabilities of generative AI services Who this book is for Whether you're a cloud engineer, software developer, an aspiring data scientist, or simply interested in learning AI/ML concepts and capabilities on Azure, this book is for you. The book also serves as a foundation for those looking to attempt more advanced AI and data science-related certification exams (e.g. Microsoft Certified: Azure AI Engineer Associate). Although no experience in data science and software engineering is required, basic knowledge of cloud concepts and client-server applications is assumed.
Publisher: Packt Publishing Ltd
ISBN: 1835885675
Category : Computers
Languages : en
Pages : 288
Book Description
Get ready to pass the certification exam on your first attempt by gaining actionable insights into AI concepts, ML techniques, and Azure AI services covered in the latest AI-900 exam syllabus from two industry experts Key Features Discover Azure AI services, including computer vision, Auto ML, NLP, and OpenAI Explore AI use cases, such as image identification, chatbots, and more Work through 145 practice questions under chapter-end self-assessments and mock exams Purchase of this book unlocks access to web-based exam prep resources, including mock exams, flashcards, and exam tips Book Description The AI-900 exam helps you take your first step into an AI-shaped future. Regardless of your technical background, this book will help you test your understanding of the key AI-related topics and tools used to develop AI solutions in Azure cloud. This exam guide focuses on AI workloads, including natural language processing (NLP) and large language models (LLMs). You'll explore Microsoft's responsible AI principles like safety and accountability. Then, you'll cover the basics of machine learning (ML), including classification and deep learning, and learn how to use training and validation datasets with Azure ML. Using Azure AI Vision, face detection, and Video Indexer services, you'll get up to speed with computer vision-related topics like image classification, object detection, and facial detection. Later chapters cover NLP features such as key phrase extraction, sentiment analysis, and speech processing using Azure AI Language, speech, and translator services. The book also guides you through identifying GenAI models and leveraging Azure OpenAI Service for content generation. At the end of each chapter, you'll find chapter review questions with answers, provided as an online resource. By the end of this exam guide, you'll be able to work with AI solutions in Azure and pass the AI-900 exam using the online exam prep resources. What you will learn Discover various types of artificial intelligence (AI)workloads and services in Azure Cover Microsoft's guiding principles for responsible AI development and use Understand the fundamental principles of how AI and machine learning work Explore how AI models can recognize content in images and documents Gain insights into the features and use cases for natural language processing Explore the capabilities of generative AI services Who this book is for Whether you're a cloud engineer, software developer, an aspiring data scientist, or simply interested in learning AI/ML concepts and capabilities on Azure, this book is for you. The book also serves as a foundation for those looking to attempt more advanced AI and data science-related certification exams (e.g. Microsoft Certified: Azure AI Engineer Associate). Although no experience in data science and software engineering is required, basic knowledge of cloud concepts and client-server applications is assumed.
Effective Data Science Infrastructure
Author: Ville Tuulos
Publisher: Simon and Schuster
ISBN: 1617299197
Category : Computers
Languages : en
Pages : 350
Book Description
Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you'll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You'll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python.
Publisher: Simon and Schuster
ISBN: 1617299197
Category : Computers
Languages : en
Pages : 350
Book Description
Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you'll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You'll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python.