Author: Abdelhamid Mellouk
Publisher: BoD – Books on Demand
ISBN: 3902613564
Category : Computers
Languages : en
Pages : 434
Book Description
Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience.
Machine Learning
Author: Abdelhamid Mellouk
Publisher: BoD – Books on Demand
ISBN: 3902613564
Category : Computers
Languages : en
Pages : 434
Book Description
Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience.
Publisher: BoD – Books on Demand
ISBN: 3902613564
Category : Computers
Languages : en
Pages : 434
Book Description
Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience.
Academic Press Library in Signal Processing, Volume 6
Author:
Publisher: Academic Press
ISBN: 0128119004
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
Academic Press Library in Signal Processing, Volume 6: Image and Video Processing and Analysis and Computer Vision is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in both image and video processing and analysis and computer vision. The book provides an invaluable starting point to the area through the insight and understanding that it provides. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. - Presents a quick tutorial of reviews of important and emerging topics of research - Explores core principles, technologies, algorithms and applications - Edited and contributed by international leading figures in the field - Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge
Publisher: Academic Press
ISBN: 0128119004
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
Academic Press Library in Signal Processing, Volume 6: Image and Video Processing and Analysis and Computer Vision is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in both image and video processing and analysis and computer vision. The book provides an invaluable starting point to the area through the insight and understanding that it provides. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. - Presents a quick tutorial of reviews of important and emerging topics of research - Explores core principles, technologies, algorithms and applications - Edited and contributed by international leading figures in the field - Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge
Articulated Motion and Deformable Objects
Author: Francisco J. Perales
Publisher: Springer
ISBN: 3540361383
Category : Computers
Languages : en
Pages : 267
Book Description
This book constitutes the refereed proceedings of the Second International Workshop on Articulated Motion and Deformable Objects, AMDO 2002, held in Palma de Mallorca, Spain in November 2002.The 21 revised full papers presented were carefully reviewed and selected for inclusion in the book. Among the topics addressed are geometric and physical deformable objects, motion analysis, articulated models and animation, visualization of deformable models, 3D recovery from motion, single or multiple human motion analysis and synthesis, applications of deformable models and motion analysis, face tracking, recovery and recognition models.
Publisher: Springer
ISBN: 3540361383
Category : Computers
Languages : en
Pages : 267
Book Description
This book constitutes the refereed proceedings of the Second International Workshop on Articulated Motion and Deformable Objects, AMDO 2002, held in Palma de Mallorca, Spain in November 2002.The 21 revised full papers presented were carefully reviewed and selected for inclusion in the book. Among the topics addressed are geometric and physical deformable objects, motion analysis, articulated models and animation, visualization of deformable models, 3D recovery from motion, single or multiple human motion analysis and synthesis, applications of deformable models and motion analysis, face tracking, recovery and recognition models.
Semi-Supervised Learning
Author: Olivier Chapelle
Publisher: MIT Press
ISBN: 0262514125
Category : Computers
Languages : en
Pages : 525
Book Description
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.
Publisher: MIT Press
ISBN: 0262514125
Category : Computers
Languages : en
Pages : 525
Book Description
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.
Recent Advances in Motion Analysis
Author: Francesco Di Nardo
Publisher: MDPI
ISBN: 3036504389
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
The advances in the technology and methodology for human movement capture and analysis over the last decade have been remarkable. Besides acknowledged approaches for kinematic, dynamic, and electromyographic (EMG) analysis carried out in the laboratory, more recently developed devices, such as wearables, inertial measurement units, ambient sensors, and cameras or depth sensors, have been adopted on a wide scale. Furthermore, computational intelligence (CI) methods, such as artificial neural networks, have recently emerged as promising tools for the development and application of intelligent systems in motion analysis. Thus, the synergy of classic instrumentation and novel smart devices and techniques has created unique capabilities in the continuous monitoring of motor behaviors in different fields, such as clinics, sports, and ergonomics. However, real-time sensing, signal processing, human activity recognition, and characterization and interpretation of motion metrics and behaviors from sensor data still representing a challenging problem not only in laboratories but also at home and in the community. This book addresses open research issues related to the improvement of classic approaches and the development of novel technologies and techniques in the domain of motion analysis in all the various fields of application.
Publisher: MDPI
ISBN: 3036504389
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
The advances in the technology and methodology for human movement capture and analysis over the last decade have been remarkable. Besides acknowledged approaches for kinematic, dynamic, and electromyographic (EMG) analysis carried out in the laboratory, more recently developed devices, such as wearables, inertial measurement units, ambient sensors, and cameras or depth sensors, have been adopted on a wide scale. Furthermore, computational intelligence (CI) methods, such as artificial neural networks, have recently emerged as promising tools for the development and application of intelligent systems in motion analysis. Thus, the synergy of classic instrumentation and novel smart devices and techniques has created unique capabilities in the continuous monitoring of motor behaviors in different fields, such as clinics, sports, and ergonomics. However, real-time sensing, signal processing, human activity recognition, and characterization and interpretation of motion metrics and behaviors from sensor data still representing a challenging problem not only in laboratories but also at home and in the community. This book addresses open research issues related to the improvement of classic approaches and the development of novel technologies and techniques in the domain of motion analysis in all the various fields of application.
Structural, Syntactic, and Statistical Pattern Recognition
Author: Pasi Fränti
Publisher: Springer
ISBN: 3662444151
Category : Computers
Languages : en
Pages : 493
Book Description
This book constitutes the proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2014; comprising the International Workshop on Structural and Syntactic Pattern Recognition, SSPR, and the International Workshop on Statistical Techniques in Pattern Recognition, SPR. The total of 25 full papers and 22 poster papers included in this book were carefully reviewed and selected from 78 submissions. They are organized in topical sections named: graph kernels; clustering; graph edit distance; graph models and embedding; discriminant analysis; combining and selecting; joint session; metrics and dissimilarities; applications; partial supervision; and poster session.
Publisher: Springer
ISBN: 3662444151
Category : Computers
Languages : en
Pages : 493
Book Description
This book constitutes the proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2014; comprising the International Workshop on Structural and Syntactic Pattern Recognition, SSPR, and the International Workshop on Statistical Techniques in Pattern Recognition, SPR. The total of 25 full papers and 22 poster papers included in this book were carefully reviewed and selected from 78 submissions. They are organized in topical sections named: graph kernels; clustering; graph edit distance; graph models and embedding; discriminant analysis; combining and selecting; joint session; metrics and dissimilarities; applications; partial supervision; and poster session.
Transfer Learning
Author: Qiang Yang
Publisher: Cambridge University Press
ISBN: 1108860087
Category : Computers
Languages : en
Pages : 394
Book Description
Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.
Publisher: Cambridge University Press
ISBN: 1108860087
Category : Computers
Languages : en
Pages : 394
Book Description
Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.
Deep Learning for Unmanned Systems
Author: Anis Koubaa
Publisher: Springer Nature
ISBN: 3030779394
Category : Technology & Engineering
Languages : en
Pages : 731
Book Description
This book is used at the graduate or advanced undergraduate level and many others. Manned and unmanned ground, aerial and marine vehicles enable many promising and revolutionary civilian and military applications that will change our life in the near future. These applications include, but are not limited to, surveillance, search and rescue, environment monitoring, infrastructure monitoring, self-driving cars, contactless last-mile delivery vehicles, autonomous ships, precision agriculture and transmission line inspection to name just a few. These vehicles will benefit from advances of deep learning as a subfield of machine learning able to endow these vehicles with different capability such as perception, situation awareness, planning and intelligent control. Deep learning models also have the ability to generate actionable insights into the complex structures of large data sets. In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN). The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science. The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS) The book chapters present various techniques of deep learning for robotic applications. The book chapters contain a good literature survey with a long list of references. The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques. The book chapters are lucidly illustrated with numerical examples and simulations. The book chapters discuss details of applications and future research areas.
Publisher: Springer Nature
ISBN: 3030779394
Category : Technology & Engineering
Languages : en
Pages : 731
Book Description
This book is used at the graduate or advanced undergraduate level and many others. Manned and unmanned ground, aerial and marine vehicles enable many promising and revolutionary civilian and military applications that will change our life in the near future. These applications include, but are not limited to, surveillance, search and rescue, environment monitoring, infrastructure monitoring, self-driving cars, contactless last-mile delivery vehicles, autonomous ships, precision agriculture and transmission line inspection to name just a few. These vehicles will benefit from advances of deep learning as a subfield of machine learning able to endow these vehicles with different capability such as perception, situation awareness, planning and intelligent control. Deep learning models also have the ability to generate actionable insights into the complex structures of large data sets. In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN). The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science. The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS) The book chapters present various techniques of deep learning for robotic applications. The book chapters contain a good literature survey with a long list of references. The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques. The book chapters are lucidly illustrated with numerical examples and simulations. The book chapters discuss details of applications and future research areas.
Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Machine Learning Methodologies To Study Molecular Interactions
Author: Elif Ozkirimli
Publisher: Frontiers Media SA
ISBN: 2889741214
Category : Science
Languages : en
Pages : 147
Book Description
Dr. Elif Ozkirimli is a full time employee of F. Hoffmann-La Roche AG, Switzerland and Dr. Artur Yakimovich is a full time employee of Roche Products Limited, UK. All other Topic Editors declare no competing interests with regards to the Research Topic.
Publisher: Frontiers Media SA
ISBN: 2889741214
Category : Science
Languages : en
Pages : 147
Book Description
Dr. Elif Ozkirimli is a full time employee of F. Hoffmann-La Roche AG, Switzerland and Dr. Artur Yakimovich is a full time employee of Roche Products Limited, UK. All other Topic Editors declare no competing interests with regards to the Research Topic.