Author: Daniel J. Thomas
Publisher: Woodhead Publishing
ISBN: 0081012160
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. - Discusses new possibilities in tissue engineering with 3D printing - Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues - Reviews emerging technologies in addition to commercial techniques
3D Bioprinting for Reconstructive Surgery
Author: Daniel J. Thomas
Publisher: Woodhead Publishing
ISBN: 0081012160
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. - Discusses new possibilities in tissue engineering with 3D printing - Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues - Reviews emerging technologies in addition to commercial techniques
Publisher: Woodhead Publishing
ISBN: 0081012160
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. - Discusses new possibilities in tissue engineering with 3D printing - Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues - Reviews emerging technologies in addition to commercial techniques
Essentials of 3D Biofabrication and Translation
Author: Anthony Atala
Publisher: Academic Press
ISBN: 0128010150
Category : Science
Languages : en
Pages : 441
Book Description
Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. - Provides a new and versatile method to fabricating living tissue - Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction - Describes current approaches and future challenges for translational science - Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms
Publisher: Academic Press
ISBN: 0128010150
Category : Science
Languages : en
Pages : 441
Book Description
Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. - Provides a new and versatile method to fabricating living tissue - Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction - Describes current approaches and future challenges for translational science - Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms
3D Bioprinting in Regenerative Engineering
Author: Ali Khademhosseini
Publisher: CRC Press
ISBN: 1315280477
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications
Publisher: CRC Press
ISBN: 1315280477
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications
3D Printing Technology in Nanomedicine
Author: Nabeel Ahmad
Publisher: Elsevier
ISBN: 0128158913
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
3D Printing Technology in Nanomedicine provides an integrated and introductory look into the rapidly evolving field of nanobiotechnology. It demystifies the processes of commercialization and discusses legal and regulatory considerations. With a focus on nanoscale processes and biomedical applications, users will find this to be a comprehensive resource on how 3D printing can be utilized in a range of areas, including the diagnosis and treatment of a variety of human diseases. - Examines the emerging market of 3D-printed biomaterials and their clinical applications, with a particular focus on both commercial and premarket tools - Examines the promising market of 3D-printed nanoparticles, nanomaterial, biomaterials, composite nanomaterial and their clinical applications in the cardiovascular and chemotherapy realms - Develops the concept of integrating different technologies along the hierarchical structure of biological systems
Publisher: Elsevier
ISBN: 0128158913
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
3D Printing Technology in Nanomedicine provides an integrated and introductory look into the rapidly evolving field of nanobiotechnology. It demystifies the processes of commercialization and discusses legal and regulatory considerations. With a focus on nanoscale processes and biomedical applications, users will find this to be a comprehensive resource on how 3D printing can be utilized in a range of areas, including the diagnosis and treatment of a variety of human diseases. - Examines the emerging market of 3D-printed biomaterials and their clinical applications, with a particular focus on both commercial and premarket tools - Examines the promising market of 3D-printed nanoparticles, nanomaterial, biomaterials, composite nanomaterial and their clinical applications in the cardiovascular and chemotherapy realms - Develops the concept of integrating different technologies along the hierarchical structure of biological systems
Cardiac Regeneration
Author: Masaki Ieda
Publisher: Springer
ISBN: 3319561065
Category : Medical
Languages : en
Pages : 277
Book Description
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.
Publisher: Springer
ISBN: 3319561065
Category : Medical
Languages : en
Pages : 277
Book Description
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.
Organ Manufacturing
Author: Xiaohong Wang
Publisher: Nova Science Publishers
ISBN: 9781634829571
Category : Artificial organs
Languages : en
Pages : 0
Book Description
This is the first time that human organs, such as the heart, liver, kidney, stomach, uterus, skin, lung, pancreas and breast can be manufactured automatically and precisely for clinical transplantation, drug screening and metabolism model establishment. Headed by Professor Xiaohong Wang (also the founder and director) in the Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, this group has focused on organ manufacturing for over ten years. A series of technical bottleneck problems, such as vascular and nerve system establishment in a construct, multiple cell types and material system incorporation, and stem cell sequential engagement, have been overcome one by one. Two technical approaches have been exploited extensively. One is multiple nozzle rapid prototyping (RP), additive manufacturing (AM), or three-dimension (3D) printing. The other is combined mold systems. More than 110 articles and 40 patents with a series of theories and practices have been published consequently. In the future, all the failed organs (including the brain) in the human body can be substituted easily like a small accessory part in a car. Everyone can get benefit from these techniques, which ultimately means that the lifespan of humans, therefore, can be greatly prolonged from this time point. This book examines the progress made in the field and the developments made by these researchers (and authors) in the field.
Publisher: Nova Science Publishers
ISBN: 9781634829571
Category : Artificial organs
Languages : en
Pages : 0
Book Description
This is the first time that human organs, such as the heart, liver, kidney, stomach, uterus, skin, lung, pancreas and breast can be manufactured automatically and precisely for clinical transplantation, drug screening and metabolism model establishment. Headed by Professor Xiaohong Wang (also the founder and director) in the Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, this group has focused on organ manufacturing for over ten years. A series of technical bottleneck problems, such as vascular and nerve system establishment in a construct, multiple cell types and material system incorporation, and stem cell sequential engagement, have been overcome one by one. Two technical approaches have been exploited extensively. One is multiple nozzle rapid prototyping (RP), additive manufacturing (AM), or three-dimension (3D) printing. The other is combined mold systems. More than 110 articles and 40 patents with a series of theories and practices have been published consequently. In the future, all the failed organs (including the brain) in the human body can be substituted easily like a small accessory part in a car. Everyone can get benefit from these techniques, which ultimately means that the lifespan of humans, therefore, can be greatly prolonged from this time point. This book examines the progress made in the field and the developments made by these researchers (and authors) in the field.
Bioprinting in Regenerative Medicine
Author: Kursad Turksen
Publisher: Springer
ISBN: 3319213865
Category : Science
Languages : en
Pages : 148
Book Description
This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.
Publisher: Springer
ISBN: 3319213865
Category : Science
Languages : en
Pages : 148
Book Description
This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.
3D Bioprinting
Author: Ibrahim Tarik Ozbolat
Publisher: Academic Press
ISBN: 0128030305
Category : Medical
Languages : en
Pages : 358
Book Description
3D Bioprinting: Fundamentals, Principles and Applications provides the latest information on the fundamentals, principles, physics, and applications of 3D bioprinting. It contains descriptions of the various bioprinting processes and technologies used in additive biomanufacturing of tissue constructs, tissues, and organs using living cells. The increasing availability and decreasing costs of 3D printing technologies are driving its use to meet medical needs, and this book provides an overview of these technologies and their integration. Each chapter discusses current limitations on the relevant technology, giving future perspectives. Professor Ozbolat has pulled together expertise from the fields of bioprinting, tissue engineering, tissue fabrication, and 3D printing in his inclusive table of contents. Topics covered include raw materials, processes, machine technology, products, applications, and limitations. The information in this book will help bioengineers, tissue and manufacturing engineers, and medical doctors understand the features of each bioprinting process, as well as bioink and bioprinter types. In addition, the book presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics. - Describes all aspects of the bioprinting process, from bioink processing through design for bioprinting, bioprinting techniques, bioprinter technologies, organ printing, applications, and future trends - Provides a detailed description of each bioprinting technique with an in-depth understanding of its process modeling, underlying physics and characteristics, suitable bioink and cell types printed, and major accomplishments achieved thus far - Explains organ printing technology in detail with a step-by-step roadmap for the 3D bioprinting of organs from isolating stem cells to the post-transplantation of organs - Presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics
Publisher: Academic Press
ISBN: 0128030305
Category : Medical
Languages : en
Pages : 358
Book Description
3D Bioprinting: Fundamentals, Principles and Applications provides the latest information on the fundamentals, principles, physics, and applications of 3D bioprinting. It contains descriptions of the various bioprinting processes and technologies used in additive biomanufacturing of tissue constructs, tissues, and organs using living cells. The increasing availability and decreasing costs of 3D printing technologies are driving its use to meet medical needs, and this book provides an overview of these technologies and their integration. Each chapter discusses current limitations on the relevant technology, giving future perspectives. Professor Ozbolat has pulled together expertise from the fields of bioprinting, tissue engineering, tissue fabrication, and 3D printing in his inclusive table of contents. Topics covered include raw materials, processes, machine technology, products, applications, and limitations. The information in this book will help bioengineers, tissue and manufacturing engineers, and medical doctors understand the features of each bioprinting process, as well as bioink and bioprinter types. In addition, the book presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics. - Describes all aspects of the bioprinting process, from bioink processing through design for bioprinting, bioprinting techniques, bioprinter technologies, organ printing, applications, and future trends - Provides a detailed description of each bioprinting technique with an in-depth understanding of its process modeling, underlying physics and characteristics, suitable bioink and cell types printed, and major accomplishments achieved thus far - Explains organ printing technology in detail with a step-by-step roadmap for the 3D bioprinting of organs from isolating stem cells to the post-transplantation of organs - Presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics
Organ Tissue Engineering
Author: Daniel Eberli
Publisher: Springer
ISBN: 9783030442101
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The notion of being able to engineer complete organs has inspired an entire generation of researchers. While recent years have brought significant progress in regenerative medicine and tissue engineering, the immense challenges encountered when trying to engineer an entire organ have to be acknowledged. Despite a good understanding of cell phenotypes, cellular niches and cell-to-biomaterial interactions, the formation of tissues composed of multiple cells remains highly challenging. Only a step-by-step approach will allow the future production of a living tissue construct ready for implantation and to augment organ function. In this book, expert authors present the current state of this approach. It offers a concise overview and serves as a great starting point for anyone interested in the application of tissue engineering or regenerative medicine for organ engineering. Each chapter contains a short overview including physiological and pathological changes as well as the current clinical need. The potential cell sources and suitable biomaterials for each organ type are discussed and possibilities to produce organ-like structures are illustrated. The ultimate goal is for the generated small tissues to unfold their full potential in vivo and to serve as a native tissue equivalent. By integrating and evolving, these implants will form functional tissue in-vivo. This book discusses the desired outcome by focusing on well-defined functional readouts. Each chapter addresses the status of clinical translations and closes with the discussion of current bottlenecks and an outlook for the coming years. A successful regenerative medicine approach could solve organ shortage by providing biological substitutes for clinical use - clearly, this merits a collaborative effort.
Publisher: Springer
ISBN: 9783030442101
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The notion of being able to engineer complete organs has inspired an entire generation of researchers. While recent years have brought significant progress in regenerative medicine and tissue engineering, the immense challenges encountered when trying to engineer an entire organ have to be acknowledged. Despite a good understanding of cell phenotypes, cellular niches and cell-to-biomaterial interactions, the formation of tissues composed of multiple cells remains highly challenging. Only a step-by-step approach will allow the future production of a living tissue construct ready for implantation and to augment organ function. In this book, expert authors present the current state of this approach. It offers a concise overview and serves as a great starting point for anyone interested in the application of tissue engineering or regenerative medicine for organ engineering. Each chapter contains a short overview including physiological and pathological changes as well as the current clinical need. The potential cell sources and suitable biomaterials for each organ type are discussed and possibilities to produce organ-like structures are illustrated. The ultimate goal is for the generated small tissues to unfold their full potential in vivo and to serve as a native tissue equivalent. By integrating and evolving, these implants will form functional tissue in-vivo. This book discusses the desired outcome by focusing on well-defined functional readouts. Each chapter addresses the status of clinical translations and closes with the discussion of current bottlenecks and an outlook for the coming years. A successful regenerative medicine approach could solve organ shortage by providing biological substitutes for clinical use - clearly, this merits a collaborative effort.
Kidney Transplantation, Bioengineering, and Regeneration
Author: Giuseppe Orlando
Publisher: Academic Press
ISBN: 0128018364
Category : Science
Languages : en
Pages : 1253
Book Description
Kidney Transplantation, Bioengineering, and Regeneration: Kidney Transplantation in the Regenerative Medicine Era investigates how the field of regenerative medicine is changing the traditional premises of solid organ transplantation, specifically within the field of kidney transplantation. In Section 1, chapters illustrate the state of the art in kidney transplantation as well as the research behind the bioengineering and regeneration of kidney organoids for therapeutic renal replacement. In Section II, chapters catalog the technologies that are being developed and the methods that are being implemented to bioengineer or regenerate kidneys in order to restore function, while critically highlighting those technological advances which hold the most promise. The book thus encompasses clinical renal transplantation, tissue engineering, biomaterial sciences, stem cell biology, and developmental biology, as they are all applied to the kidney. - Focuses on the synergy between renal organ transplantation and regenerative medicine, highlighting the advances within transplantation, bioengineering, regeneration, and repair - Educates the transplant community on important regenerative medicine research pertinent to kidney transplantation - Develops a shared language for clinicians, surgeons, and basic researchers to reach across the fields of transplantation and regenerative medicine, and facilitate more productive investigation and research - Catalogs the technologies being developed and methods being implemented to bioengineer or regenerate kidneys to restore function
Publisher: Academic Press
ISBN: 0128018364
Category : Science
Languages : en
Pages : 1253
Book Description
Kidney Transplantation, Bioengineering, and Regeneration: Kidney Transplantation in the Regenerative Medicine Era investigates how the field of regenerative medicine is changing the traditional premises of solid organ transplantation, specifically within the field of kidney transplantation. In Section 1, chapters illustrate the state of the art in kidney transplantation as well as the research behind the bioengineering and regeneration of kidney organoids for therapeutic renal replacement. In Section II, chapters catalog the technologies that are being developed and the methods that are being implemented to bioengineer or regenerate kidneys in order to restore function, while critically highlighting those technological advances which hold the most promise. The book thus encompasses clinical renal transplantation, tissue engineering, biomaterial sciences, stem cell biology, and developmental biology, as they are all applied to the kidney. - Focuses on the synergy between renal organ transplantation and regenerative medicine, highlighting the advances within transplantation, bioengineering, regeneration, and repair - Educates the transplant community on important regenerative medicine research pertinent to kidney transplantation - Develops a shared language for clinicians, surgeons, and basic researchers to reach across the fields of transplantation and regenerative medicine, and facilitate more productive investigation and research - Catalogs the technologies being developed and methods being implemented to bioengineer or regenerate kidneys to restore function