Author: Kishor Kumar Sadasivuni
Publisher: Elsevier
ISBN: 0128173025
Category : Technology & Engineering
Languages : en
Pages : 594
Book Description
3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting. Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case. - Provides a thorough, clear understanding of polymer preparation techniques and 3D and 4D printing processes, with a view to specific applications - Examines synthesis, formation methodology, the dispersion of fillers, characterization, properties, and performance of polymer nanocomposites - Explores the possibilities of 4D printing, covering the usage of stimuli responsive hydrogels and shape memory polymers
3D and 4D Printing of Polymer Nanocomposite Materials
Author: Kishor Kumar Sadasivuni
Publisher: Elsevier
ISBN: 0128173025
Category : Technology & Engineering
Languages : en
Pages : 594
Book Description
3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting. Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case. - Provides a thorough, clear understanding of polymer preparation techniques and 3D and 4D printing processes, with a view to specific applications - Examines synthesis, formation methodology, the dispersion of fillers, characterization, properties, and performance of polymer nanocomposites - Explores the possibilities of 4D printing, covering the usage of stimuli responsive hydrogels and shape memory polymers
Publisher: Elsevier
ISBN: 0128173025
Category : Technology & Engineering
Languages : en
Pages : 594
Book Description
3D and 4D Printing of Polymer Nanocomposite Materials: Processing, Applications, and Challenges covers advanced 3D and 4D printing processes and the latest developments in novel polymer-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The book presents processes, materials selection, and printability issues, along with sections on the preparation of polymer composite materials for 3D and 4D printing. Across the book, advanced printing techniques are covered and discussed thoroughly, including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting. Finally, major applications areas are discussed, including electronic, aerospace, construction and biomedical applications, with detailed information on the design, fabrication and processing methods required in each case. - Provides a thorough, clear understanding of polymer preparation techniques and 3D and 4D printing processes, with a view to specific applications - Examines synthesis, formation methodology, the dispersion of fillers, characterization, properties, and performance of polymer nanocomposites - Explores the possibilities of 4D printing, covering the usage of stimuli responsive hydrogels and shape memory polymers
Shape Memory Polymers for Biomedical Applications
Author: L Yahia
Publisher: Elsevier
ISBN: 0857097059
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
Shape memory polymers (SMPs) are an emerging class of smart polymers which give scientists the ability to process the material into a permanent state and predefine a second temporary state which can be triggered by different stimuli. The changing chemistries of SMPs allows scientists to tailor important properties such as strength, stiffness, elasticity and expansion rate. Consequently SMPs are being increasingly used and developed for minimally invasive applications where the material can expand and develop post insertion. This book will provide readers with a comprehensive review of shape memory polymer technologies. Part 1 will discuss the fundamentals and mechanical aspects of SMPs. Chapters in part 2 will look at the range of technologies and materials available for scientific manipulation whilst the final set of chapters will review applications. - Reviews the fundamentals of shape memory polymers with chapters focussing on the basic principles of the materials - Comprehensive coverage of design and mechanical aspects of SMPs - Expert analysis of the range of technologies and materials available for scientific manipulation
Publisher: Elsevier
ISBN: 0857097059
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
Shape memory polymers (SMPs) are an emerging class of smart polymers which give scientists the ability to process the material into a permanent state and predefine a second temporary state which can be triggered by different stimuli. The changing chemistries of SMPs allows scientists to tailor important properties such as strength, stiffness, elasticity and expansion rate. Consequently SMPs are being increasingly used and developed for minimally invasive applications where the material can expand and develop post insertion. This book will provide readers with a comprehensive review of shape memory polymer technologies. Part 1 will discuss the fundamentals and mechanical aspects of SMPs. Chapters in part 2 will look at the range of technologies and materials available for scientific manipulation whilst the final set of chapters will review applications. - Reviews the fundamentals of shape memory polymers with chapters focussing on the basic principles of the materials - Comprehensive coverage of design and mechanical aspects of SMPs - Expert analysis of the range of technologies and materials available for scientific manipulation
3D Printing for Energy Applications
Author: Albert Tarancón
Publisher: John Wiley & Sons
ISBN: 1119560764
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
Publisher: John Wiley & Sons
ISBN: 1119560764
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
Bioresorbable Polymers
Author: Declan Devine
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110640570
Category : Medical
Languages : en
Pages : 152
Book Description
Bioresorbable implants can be processed via conventional polymer processing methods such as extrusion, injection and compressing moulding, solvent spinning or casting. This book addresses issues and highlights recent advances in the use of biodegradable polymers. It is intended for researchers utilizing biodegradable polymers in areas from tissue engineering to controlled release of active pharmaceuticals, as well as industrial processors.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110640570
Category : Medical
Languages : en
Pages : 152
Book Description
Bioresorbable implants can be processed via conventional polymer processing methods such as extrusion, injection and compressing moulding, solvent spinning or casting. This book addresses issues and highlights recent advances in the use of biodegradable polymers. It is intended for researchers utilizing biodegradable polymers in areas from tissue engineering to controlled release of active pharmaceuticals, as well as industrial processors.
Liquid Crystal Elastomers
Author: Mark Warner
Publisher: Oxford University Press
ISBN: 9780199214860
Category : Mathematics
Languages : en
Pages : 423
Book Description
This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.
Publisher: Oxford University Press
ISBN: 9780199214860
Category : Mathematics
Languages : en
Pages : 423
Book Description
This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.
Mechanically Responsive Materials for Soft Robotics
Author: Hideko Koshima
Publisher: John Wiley & Sons
ISBN: 3527346201
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
Publisher: John Wiley & Sons
ISBN: 3527346201
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
Polymer Nanocomposite Materials
Author: Ye Zhou
Publisher: John Wiley & Sons
ISBN: 3527826505
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Polymer Nanocomposite Materials Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices delivers an original and insightful treatment of polymer nanocomposite applications in energy, information, and biotechnology. The book systematically reviews the preparation and characterization of polymer nanocomposites from zero-, one-, and two-dimensional nanomaterials. The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. Polymer Nanocomposite Materials discusses challenges associated with the devices and materials, possible strategies for future directions of the technology, and the possible commercial applications of electronic devices built on these materials. Readers will also benefit from the inclusion of: A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.
Publisher: John Wiley & Sons
ISBN: 3527826505
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Polymer Nanocomposite Materials Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices delivers an original and insightful treatment of polymer nanocomposite applications in energy, information, and biotechnology. The book systematically reviews the preparation and characterization of polymer nanocomposites from zero-, one-, and two-dimensional nanomaterials. The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. Polymer Nanocomposite Materials discusses challenges associated with the devices and materials, possible strategies for future directions of the technology, and the possible commercial applications of electronic devices built on these materials. Readers will also benefit from the inclusion of: A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.
3D Industrial Printing with Polymers
Author: Johannes Karl Fink
Publisher: John Wiley & Sons
ISBN: 1119555310
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
3D industrial printing has become mainstream in manufacturing. This unique book is the first to focus on polymers as the printing material. The scientific literature with respect to 3D printing is collated in this monograph. The book opens with a chapter on foundational issues such and presents a broad overview of 3D printing procedures and the materials used therein. In particular, the methods of 3d printing are discussed and the polymers and composites used for 3d printing are detailed. The book details the main fields of applications areas which include electric and magnetic uses, medical applications, and pharmaceutical applications. Electric and magnetic uses include electronic materials, actuators, piezoelectric materials, antennas, batteries and fuel cells. Medical applications are organ manufacturing, bone repair materials, drug-eluting coronary stents, and dental applications. The pharmaceutical applications are composite tablets, transdermal drug delivery, and patient-specific liquid capsules. A special chapter deals with the growing aircraft and automotive uses for 3D printing, such as with manufacturing of aircraft parts and aircraft cabins. In the field of cars, 3D printing is gaining importance for automotive parts (brake components, drives), for the fabrication of automotive repair systems, and even 3D printed vehicles.
Publisher: John Wiley & Sons
ISBN: 1119555310
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
3D industrial printing has become mainstream in manufacturing. This unique book is the first to focus on polymers as the printing material. The scientific literature with respect to 3D printing is collated in this monograph. The book opens with a chapter on foundational issues such and presents a broad overview of 3D printing procedures and the materials used therein. In particular, the methods of 3d printing are discussed and the polymers and composites used for 3d printing are detailed. The book details the main fields of applications areas which include electric and magnetic uses, medical applications, and pharmaceutical applications. Electric and magnetic uses include electronic materials, actuators, piezoelectric materials, antennas, batteries and fuel cells. Medical applications are organ manufacturing, bone repair materials, drug-eluting coronary stents, and dental applications. The pharmaceutical applications are composite tablets, transdermal drug delivery, and patient-specific liquid capsules. A special chapter deals with the growing aircraft and automotive uses for 3D printing, such as with manufacturing of aircraft parts and aircraft cabins. In the field of cars, 3D printing is gaining importance for automotive parts (brake components, drives), for the fabrication of automotive repair systems, and even 3D printed vehicles.
High-Performance Composite Structures
Author: A. Praveen Kumar
Publisher: Springer Nature
ISBN: 9811673772
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This book covers advanced 3D printing processes and the latest developments in novel composite-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The rise in ecological anxieties has forced scientists and researchers from all over the world to find novel lightweight materials. Therefore, it is necessary to expand knowledge about the processing, applications, and challenges of 3D printing of composite materials to expanding the range of their application. This book presents an extensive survey on recent improvements in the research and development of additive manufacturing technologies that are used to make composite structures for various applications such as electronic, aerospace, construction, and biomedical applications. Advanced printing techniques including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting will be covered and discussed thoroughly in this book. This book also focuses the recent advances and challenges in polymer nanocomposite and introduces potential applications of these materials in various sectors.
Publisher: Springer Nature
ISBN: 9811673772
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This book covers advanced 3D printing processes and the latest developments in novel composite-based printing materials, thus enabling the reader to understand and benefit from the advantages of this groundbreaking technology. The rise in ecological anxieties has forced scientists and researchers from all over the world to find novel lightweight materials. Therefore, it is necessary to expand knowledge about the processing, applications, and challenges of 3D printing of composite materials to expanding the range of their application. This book presents an extensive survey on recent improvements in the research and development of additive manufacturing technologies that are used to make composite structures for various applications such as electronic, aerospace, construction, and biomedical applications. Advanced printing techniques including fused deposition modeling (FDM), selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), inkjet 3D printing (3DP), stereolithography (SLA), and 3D plotting will be covered and discussed thoroughly in this book. This book also focuses the recent advances and challenges in polymer nanocomposite and introduces potential applications of these materials in various sectors.
Shape Memory Polymer-Derived Nanocomposites
Author: Ayesha Kausar
Publisher: Elsevier
ISBN: 0443185034
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
Shape Memory Polymer derived Nanocomposites: Features to Cutting-Edge Advancements summarizes the up-to-date of fundamentals and applications of the shape memory polymer derived nanocomposites. Design and fabrication of shape memory polymeric nanocomposites have gained significant importance in the field of up-to-date nano/materials science and technology. In recent times, the shape memory polymers and nanocomposites have attracted considerable academic and industrial research interest. This feature book will present a state-of-the-art assessment on the versatile shape memory materials. The flexibility, durability, heat stability, shape deformability, and shape memory features of these polymers have shown dramatic improvements with the nanofiller addition. Appropriate choice of the stimuli-responsive polymer, nanofiller type and content, and fabrication strategies may lead to enhanced physicochemical features and stimuli-responsive performance. Several successful stimuli-responsive effects have been achieved in the shape memory nanocomposites such as thermo-responsive, electro-active, photo-active, water/moisture-responsive, pH-sensitive, etc. Consequently, the shape memory polymer based nanocomposites have found applications in high-tech devices and applications. This book initially offers a futuristic knowledge regarding indispensable features of the shape memory polymeric nanocomposites. Afterwards, the essential categories of the stimuli-responsive polymer-based nanocomposites have been discussed in terms of recent scientific literature. Subsequent sections of this book are dedicated to the potential of shape memory polymer-based nanocomposite in various technical fields. Significant application areas have been identified as foam materials, aerospace, radiation shielding, sensor, actuator, supercapacitor, electronics and biomedical relevance. The book chapters also point towards the predictable challenges and future opportunities in the field of shape memory nanocomposites. - Provides the essentials of shape memory polymeric nanocomposites - Includes important categories of shape memory nanocomposites - Presents current technological applications of shape memory polymers and derived nanocomposite in sponges, aerospace, EMI shielding, ionizing radiation shielding, sensors, actuator, supercapacitor, electronics, and biomedical fields
Publisher: Elsevier
ISBN: 0443185034
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
Shape Memory Polymer derived Nanocomposites: Features to Cutting-Edge Advancements summarizes the up-to-date of fundamentals and applications of the shape memory polymer derived nanocomposites. Design and fabrication of shape memory polymeric nanocomposites have gained significant importance in the field of up-to-date nano/materials science and technology. In recent times, the shape memory polymers and nanocomposites have attracted considerable academic and industrial research interest. This feature book will present a state-of-the-art assessment on the versatile shape memory materials. The flexibility, durability, heat stability, shape deformability, and shape memory features of these polymers have shown dramatic improvements with the nanofiller addition. Appropriate choice of the stimuli-responsive polymer, nanofiller type and content, and fabrication strategies may lead to enhanced physicochemical features and stimuli-responsive performance. Several successful stimuli-responsive effects have been achieved in the shape memory nanocomposites such as thermo-responsive, electro-active, photo-active, water/moisture-responsive, pH-sensitive, etc. Consequently, the shape memory polymer based nanocomposites have found applications in high-tech devices and applications. This book initially offers a futuristic knowledge regarding indispensable features of the shape memory polymeric nanocomposites. Afterwards, the essential categories of the stimuli-responsive polymer-based nanocomposites have been discussed in terms of recent scientific literature. Subsequent sections of this book are dedicated to the potential of shape memory polymer-based nanocomposite in various technical fields. Significant application areas have been identified as foam materials, aerospace, radiation shielding, sensor, actuator, supercapacitor, electronics and biomedical relevance. The book chapters also point towards the predictable challenges and future opportunities in the field of shape memory nanocomposites. - Provides the essentials of shape memory polymeric nanocomposites - Includes important categories of shape memory nanocomposites - Presents current technological applications of shape memory polymers and derived nanocomposite in sponges, aerospace, EMI shielding, ionizing radiation shielding, sensors, actuator, supercapacitor, electronics, and biomedical fields