Author: Laura L. Pullum
Publisher: John Wiley & Sons
ISBN: 047008457X
Category : Computers
Languages : en
Pages : 146
Book Description
This book provides guidance on the verification and validation of neural networks/adaptive systems. Considering every process, activity, and task in the lifecycle, it supplies methods and techniques that will help the developer or V&V practitioner be confident that they are supplying an adaptive/neural network system that will perform as intended. Additionally, it is structured to be used as a cross-reference to the IEEE 1012 standard.
Guidance for the Verification and Validation of Neural Networks
Author: Laura L. Pullum
Publisher: John Wiley & Sons
ISBN: 047008457X
Category : Computers
Languages : en
Pages : 146
Book Description
This book provides guidance on the verification and validation of neural networks/adaptive systems. Considering every process, activity, and task in the lifecycle, it supplies methods and techniques that will help the developer or V&V practitioner be confident that they are supplying an adaptive/neural network system that will perform as intended. Additionally, it is structured to be used as a cross-reference to the IEEE 1012 standard.
Publisher: John Wiley & Sons
ISBN: 047008457X
Category : Computers
Languages : en
Pages : 146
Book Description
This book provides guidance on the verification and validation of neural networks/adaptive systems. Considering every process, activity, and task in the lifecycle, it supplies methods and techniques that will help the developer or V&V practitioner be confident that they are supplying an adaptive/neural network system that will perform as intended. Additionally, it is structured to be used as a cross-reference to the IEEE 1012 standard.
IEEE Std. 1012-1998
Author:
Publisher:
ISBN: 9780738114842
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780738114842
Category :
Languages : en
Pages :
Book Description
IEEE Standard for Software Verification and Validation
Author: Institute of Electrical and Electronics Engineers
Publisher:
ISBN: 9780738101965
Category : Computer programs
Languages : en
Pages : 84
Book Description
Publisher:
ISBN: 9780738101965
Category : Computer programs
Languages : en
Pages : 84
Book Description
Methods and Procedures for the Verification and Validation of Artificial Neural Networks
Author: Brian J. Taylor
Publisher: Springer Science & Business Media
ISBN: 0387294856
Category : Computers
Languages : en
Pages : 280
Book Description
Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. Currently no standards exist to verify and validate neural network-based systems. NASA Independent Verification and Validation Facility has contracted the Institute for Scientific Research, Inc. to perform research on this topic and develop a comprehensive guide to performing V&V on adaptive systems, with emphasis on neural networks used in safety-critical or mission-critical applications. Methods and Procedures for the Verification and Validation of Artificial Neural Networks is the culmination of the first steps in that research. This volume introduces some of the more promising methods and techniques used for the verification and validation (V&V) of neural networks and adaptive systems. A comprehensive guide to performing V&V on neural network systems, aligned with the IEEE Standard for Software Verification and Validation, will follow this book.
Publisher: Springer Science & Business Media
ISBN: 0387294856
Category : Computers
Languages : en
Pages : 280
Book Description
Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. Currently no standards exist to verify and validate neural network-based systems. NASA Independent Verification and Validation Facility has contracted the Institute for Scientific Research, Inc. to perform research on this topic and develop a comprehensive guide to performing V&V on adaptive systems, with emphasis on neural networks used in safety-critical or mission-critical applications. Methods and Procedures for the Verification and Validation of Artificial Neural Networks is the culmination of the first steps in that research. This volume introduces some of the more promising methods and techniques used for the verification and validation (V&V) of neural networks and adaptive systems. A comprehensive guide to performing V&V on neural network systems, aligned with the IEEE Standard for Software Verification and Validation, will follow this book.
Verification and Validation in Systems Engineering
Author: Mourad Debbabi
Publisher: Springer Science & Business Media
ISBN: 3642152287
Category : Computers
Languages : en
Pages : 261
Book Description
At the dawn of the 21st century and the information age, communication and c- puting power are becoming ever increasingly available, virtually pervading almost every aspect of modern socio-economical interactions. Consequently, the potential for realizing a signi?cantly greater number of technology-mediated activities has emerged. Indeed, many of our modern activity ?elds are heavily dependant upon various underlying systems and software-intensive platforms. Such technologies are commonly used in everyday activities such as commuting, traf?c control and m- agement, mobile computing, navigation, mobile communication. Thus, the correct function of the forenamed computing systems becomes a major concern. This is all the more important since, in spite of the numerous updates, patches and ?rmware revisions being constantly issued, newly discovered logical bugs in a wide range of modern software platforms (e. g. , operating systems) and software-intensive systems (e. g. , embedded systems) are just as frequently being reported. In addition, many of today’s products and services are presently being deployed in a highly competitive environment wherein a product or service is succeeding in most of the cases thanks to its quality to price ratio for a given set of features. Accordingly, a number of critical aspects have to be considered, such as the ab- ity to pack as many features as needed in a given product or service while c- currently maintaining high quality, reasonable price, and short time -to- market.
Publisher: Springer Science & Business Media
ISBN: 3642152287
Category : Computers
Languages : en
Pages : 261
Book Description
At the dawn of the 21st century and the information age, communication and c- puting power are becoming ever increasingly available, virtually pervading almost every aspect of modern socio-economical interactions. Consequently, the potential for realizing a signi?cantly greater number of technology-mediated activities has emerged. Indeed, many of our modern activity ?elds are heavily dependant upon various underlying systems and software-intensive platforms. Such technologies are commonly used in everyday activities such as commuting, traf?c control and m- agement, mobile computing, navigation, mobile communication. Thus, the correct function of the forenamed computing systems becomes a major concern. This is all the more important since, in spite of the numerous updates, patches and ?rmware revisions being constantly issued, newly discovered logical bugs in a wide range of modern software platforms (e. g. , operating systems) and software-intensive systems (e. g. , embedded systems) are just as frequently being reported. In addition, many of today’s products and services are presently being deployed in a highly competitive environment wherein a product or service is succeeding in most of the cases thanks to its quality to price ratio for a given set of features. Accordingly, a number of critical aspects have to be considered, such as the ab- ity to pack as many features as needed in a given product or service while c- currently maintaining high quality, reasonable price, and short time -to- market.
What Every Engineer Should Know about Software Engineering
Author: Philip A. Laplante
Publisher: CRC Press
ISBN: 1420006746
Category : Computers
Languages : en
Pages : 330
Book Description
Do you Use a computer to perform analysis or simulations in your daily work? Write short scripts or record macros to perform repetitive tasks? Need to integrate off-the-shelf software into your systems or require multiple applications to work together? Find yourself spending too much time working the kink
Publisher: CRC Press
ISBN: 1420006746
Category : Computers
Languages : en
Pages : 330
Book Description
Do you Use a computer to perform analysis or simulations in your daily work? Write short scripts or record macros to perform repetitive tasks? Need to integrate off-the-shelf software into your systems or require multiple applications to work together? Find yourself spending too much time working the kink
Practical Design Verification
Author: Dhiraj K. Pradhan
Publisher: Cambridge University Press
ISBN: 0521859727
Category : Computers
Languages : en
Pages : 289
Book Description
Improve design efficiency & reduce costs with this guide to formal & simulation-based functional verification. Presenting a theoretical & practical understanding of the key issues involved, it explains both formal techniques (model checking, equivalence checking) & simulation-based techniques (coverage metrics, test generation).
Publisher: Cambridge University Press
ISBN: 0521859727
Category : Computers
Languages : en
Pages : 289
Book Description
Improve design efficiency & reduce costs with this guide to formal & simulation-based functional verification. Presenting a theoretical & practical understanding of the key issues involved, it explains both formal techniques (model checking, equivalence checking) & simulation-based techniques (coverage metrics, test generation).
On Standardized Model Integration
Author: Robert Hällqvist
Publisher: Linköping University Electronic Press
ISBN: 9179299296
Category :
Languages : en
Pages : 97
Book Description
Designing modern aircraft is not an easy task. Today, it is not enough to optimize aircraft sub-systems at a sub-system level. Instead, a holistic approach is taken whereby the constituent sub-systems need to be designed for the best joint performance. The State-of-the-Art (SotA) in simulating and exchanging simulation models is moving forward at a fast pace. As such, the feasible use of simulation models has increased and additional benefits can be exploited, such as analysing coupled sub-systems in simulators. Furthermore, if aircraft sub-system simulation models are to be utilized to their fullest extent, opensource tooling and the use of open standards, interoperability between domain specific modeling tools, alongside robust and automated processes for model Verification and Validation (V&V) are required. The financial and safety related risks associated with aircraft development and operation require well founded design and operational decisions. If those decisions are to be founded upon information provided by models and simulators, then the credibility of that information needs to be assessed and communicated. Today, the large number of sensors available in modern aircraft enable model validation and credibility assessment on a different scale than what has been possible up to this point. This thesis aims to identify and address challenges to allow for automated, independent, and objective methods of integrating sub-system models into simulators while assessing and conveying the constituent models aggregated credibility. The results of the work include a proposed method for presenting the individual models’ aggregated credibility in a simulator. As the communicated credibility of simulators here relies on the credibility of each included model, the assembly procedure itself cannot introduce unknown discrepancies with respect to the System of Interest (SoI). Available methods for the accurate simulation of coupled models are therefore exploited and tailored to the applications of aircraft development under consideration. Finally, a framework for automated model validation is outlined, supporting on-line simulator credibility assessment according to the presented proposed method.
Publisher: Linköping University Electronic Press
ISBN: 9179299296
Category :
Languages : en
Pages : 97
Book Description
Designing modern aircraft is not an easy task. Today, it is not enough to optimize aircraft sub-systems at a sub-system level. Instead, a holistic approach is taken whereby the constituent sub-systems need to be designed for the best joint performance. The State-of-the-Art (SotA) in simulating and exchanging simulation models is moving forward at a fast pace. As such, the feasible use of simulation models has increased and additional benefits can be exploited, such as analysing coupled sub-systems in simulators. Furthermore, if aircraft sub-system simulation models are to be utilized to their fullest extent, opensource tooling and the use of open standards, interoperability between domain specific modeling tools, alongside robust and automated processes for model Verification and Validation (V&V) are required. The financial and safety related risks associated with aircraft development and operation require well founded design and operational decisions. If those decisions are to be founded upon information provided by models and simulators, then the credibility of that information needs to be assessed and communicated. Today, the large number of sensors available in modern aircraft enable model validation and credibility assessment on a different scale than what has been possible up to this point. This thesis aims to identify and address challenges to allow for automated, independent, and objective methods of integrating sub-system models into simulators while assessing and conveying the constituent models aggregated credibility. The results of the work include a proposed method for presenting the individual models’ aggregated credibility in a simulator. As the communicated credibility of simulators here relies on the credibility of each included model, the assembly procedure itself cannot introduce unknown discrepancies with respect to the System of Interest (SoI). Available methods for the accurate simulation of coupled models are therefore exploited and tailored to the applications of aircraft development under consideration. Finally, a framework for automated model validation is outlined, supporting on-line simulator credibility assessment according to the presented proposed method.
SAE International's Dictionary of Testing, Verification, and Validation
Author: Jon M. Quigley
Publisher: SAE International
ISBN: 1468605917
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
Created to elevate expertise in testing, verification, and validation with industry-specific terminology, readers are empowered to navigate the complex world of quality assurance. From foundational concepts to advanced principles, each entry provides clarity and depth, ensuring the reader becomes well-versed in the language of precision. This dictionary is an indispensable companion for both professionals and students seeking to unravel the nuances of testing methodologies, verification techniques, and validation processes. Readers will be equipped with the tools to communicate effectively, make informed decisions, and excel in projects. In addition, references to SAE Standards are included to direct the read to additional information beyond a practical definition. (ISBN 9781468605907, ISBN 9781468605914, ISBN 9781468605921, DOI 10.4271/9781468605914)
Publisher: SAE International
ISBN: 1468605917
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
Created to elevate expertise in testing, verification, and validation with industry-specific terminology, readers are empowered to navigate the complex world of quality assurance. From foundational concepts to advanced principles, each entry provides clarity and depth, ensuring the reader becomes well-versed in the language of precision. This dictionary is an indispensable companion for both professionals and students seeking to unravel the nuances of testing methodologies, verification techniques, and validation processes. Readers will be equipped with the tools to communicate effectively, make informed decisions, and excel in projects. In addition, references to SAE Standards are included to direct the read to additional information beyond a practical definition. (ISBN 9781468605907, ISBN 9781468605914, ISBN 9781468605921, DOI 10.4271/9781468605914)
Silicon Systems For Wireless Lan
Author: Zoran Stamenkovic
Publisher: World Scientific
ISBN: 981121073X
Category : Computers
Languages : en
Pages : 430
Book Description
Today's integrated silicon circuits and systems for wireless communications are of a huge complexity.This unique compendium covers all the steps (from the system-level to the transistor-level) necessary to design, model, verify, implement, and test a silicon system. It bridges the gap between the system-world and the transistor-world (between communication, system, circuit, device, and test engineers).It is extremely important nowadays (and will be more important in the future) for communication, system, and circuit engineers to understand the physical implications of system and circuit solutions based on hardware/software co-design as well as for device and test engineers to cope with the system and circuit requirements in terms of power, speed, and data throughput.Related Link(s)
Publisher: World Scientific
ISBN: 981121073X
Category : Computers
Languages : en
Pages : 430
Book Description
Today's integrated silicon circuits and systems for wireless communications are of a huge complexity.This unique compendium covers all the steps (from the system-level to the transistor-level) necessary to design, model, verify, implement, and test a silicon system. It bridges the gap between the system-world and the transistor-world (between communication, system, circuit, device, and test engineers).It is extremely important nowadays (and will be more important in the future) for communication, system, and circuit engineers to understand the physical implications of system and circuit solutions based on hardware/software co-design as well as for device and test engineers to cope with the system and circuit requirements in terms of power, speed, and data throughput.Related Link(s)