1000 Big Data & Hadoop Interview Questions and Answers

1000 Big Data & Hadoop Interview Questions and Answers PDF Author: Vamsee Puligadda
Publisher: Vamsee Puligadda
ISBN:
Category : Computers
Languages : en
Pages : 251

Get Book Here

Book Description
Get that job, you aspire for! Want to switch to that high paying job? Or are you already been preparing hard to give interview the next weekend? Do you know how many people get rejected in interviews by preparing only concepts but not focusing on actually which questions will be asked in the interview? Don't be that person this time. This is the most comprehensive Big Data, Hadoop interview questions book that you can ever find out. It contains: 1000 most frequently asked and important Big Data, Hadoop interview questions and answers Wide range of questions which cover not only basics in Big Data, Hadoop but also most advanced and complex questions which will help freshers, experienced professionals, senior developers, testers to crack their interviews.

1000 Big Data & Hadoop Interview Questions and Answers

1000 Big Data & Hadoop Interview Questions and Answers PDF Author: Vamsee Puligadda
Publisher: Vamsee Puligadda
ISBN:
Category : Computers
Languages : en
Pages : 251

Get Book Here

Book Description
Get that job, you aspire for! Want to switch to that high paying job? Or are you already been preparing hard to give interview the next weekend? Do you know how many people get rejected in interviews by preparing only concepts but not focusing on actually which questions will be asked in the interview? Don't be that person this time. This is the most comprehensive Big Data, Hadoop interview questions book that you can ever find out. It contains: 1000 most frequently asked and important Big Data, Hadoop interview questions and answers Wide range of questions which cover not only basics in Big Data, Hadoop but also most advanced and complex questions which will help freshers, experienced professionals, senior developers, testers to crack their interviews.

Parallel and Concurrent Programming in Haskell

Parallel and Concurrent Programming in Haskell PDF Author: Simon Marlow
Publisher: "O'Reilly Media, Inc."
ISBN: 1449335926
Category : Computers
Languages : en
Pages : 322

Get Book Here

Book Description
If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network

Hadoop: The Definitive Guide

Hadoop: The Definitive Guide PDF Author: Tom White
Publisher: "O'Reilly Media, Inc."
ISBN: 1449338771
Category : Computers
Languages : en
Pages : 687

Get Book Here

Book Description
Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems

Machine Learning Bookcamp

Machine Learning Bookcamp PDF Author: Alexey Grigorev
Publisher: Simon and Schuster
ISBN: 1617296813
Category : Computers
Languages : en
Pages : 470

Get Book Here

Book Description
The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.

Big Data Hadoop Interview Guide

Big Data Hadoop Interview Guide PDF Author: Vishwanathan Narayanan
Publisher:
ISBN: 9789389898323
Category : Computers
Languages : en
Pages : 96

Get Book Here

Book Description
A power-packed guide with solutions to crack a Big data Hadoop Interview KEY FEATURES •Get familiar with Big data concepts •Understand the working of Hadoop and its ecosystem. •Understand the working of HBase, Pig, Hive, Flume, Sqoop and Spark •Understand the capabilities of Big data including Hadoop and HDFS •Up and running with how to perform speedy data processing using Apache Spark DESCRIPTION This book prepares you for Big data interviews w.r.t. Hadoop system and its ecosystems such as HBase, Pig, Hive, Flume, Sqoop, and Spark. Over the last few years, there is a rise in demand for Big Data Scientists/Analysts throughout the globe. Data Analysis and Interpretation have become very important lately. The book covers many interview questions and the best possible ways to answer them. Along with the answers, you will come across real-world examples that will help you understand the concepts of Big Data. The book is divided into various sections to make it easy for you to remember and associate it with the questions asked. WHAT YOU WILL LEARN •Apache Pig interview questions and answers •HBase and Hive interview questions and answers •Apache Sqoop interview questions and answers •Apache Flume interview questions and answers •Apache Spark interview questions and answers WHO THIS BOOK IS FOR This book is for anyone interested in big data. It is also useful for all jobseekers and freshers who wants to drive their career in the field of Big Data and Data Processing. TABLE OF CONTENTS 1.Big data, Hadoop and HDFS interview questions 2.Apache PIG interview questions 3.Hive interview questions 4.Hbase interview questions 5.Apache Sqoop interview questions 6.Apache Flume interview questions 7.Apache Spark interview questions

Java/J2EE Job Interview Companion

Java/J2EE Job Interview Companion PDF Author: Arulkumaran Kumaraswamipillai
Publisher:
ISBN: 9781411668249
Category : Computers
Languages : en
Pages : 356

Get Book Here

Book Description
400+ Java/J2EE Interview questions with clear and concise answers for: job seekers (junior/senior developers, architects, team/technical leads), promotion seekers, pro-active learners and interviewers. Lulu top 100 best seller. Increase your earning potential by learning, applying and succeeding. Learn the fundamentals relating to Java/J2EE in an easy to understand questions and answers approach. Covers 400+ popular interview Q&A with lots of diagrams, examples, code snippets, cross referencing and comparisons. This is not only an interview guide but also a quick reference guide, a refresher material and a roadmap covering a wide range of Java/J2EE related topics. More Java J2EE interview questions and answers & resume resources at http: //www.lulu.com/java-succes

Too Big to Ignore

Too Big to Ignore PDF Author: Phil Simon
Publisher: John Wiley & Sons
ISBN: 1118641868
Category : Business & Economics
Languages : en
Pages : 256

Get Book Here

Book Description
Residents in Boston, Massachusetts are automatically reporting potholes and road hazards via their smartphones. Progressive Insurance tracks real-time customer driving patterns and uses that information to offer rates truly commensurate with individual safety. Google accurately predicts local flu outbreaks based upon thousands of user search queries. Amazon provides remarkably insightful, relevant, and timely product recommendations to its hundreds of millions of customers. Quantcast lets companies target precise audiences and key demographics throughout the Web. NASA runs contests via gamification site TopCoder, awarding prizes to those with the most innovative and cost-effective solutions to its problems. Explorys offers penetrating and previously unknown insights into healthcare behavior. How do these organizations and municipalities do it? Technology is certainly a big part, but in each case the answer lies deeper than that. Individuals at these organizations have realized that they don't have to be Nate Silver to reap massive benefits from today's new and emerging types of data. And each of these organizations has embraced Big Data, allowing them to make astute and otherwise impossible observations, actions, and predictions. It's time to start thinking big. In Too Big to Ignore, recognized technology expert and award-winning author Phil Simon explores an unassailably important trend: Big Data, the massive amounts, new types, and multifaceted sources of information streaming at us faster than ever. Never before have we seen data with the volume, velocity, and variety of today. Big Data is no temporary blip of fad. In fact, it is only going to intensify in the coming years, and its ramifications for the future of business are impossible to overstate. Too Big to Ignore explains why Big Data is a big deal. Simon provides commonsense, jargon-free advice for people and organizations looking to understand and leverage Big Data. Rife with case studies, examples, analysis, and quotes from real-world Big Data practitioners, the book is required reading for chief executives, company owners, industry leaders, and business professionals.

How Smart Machines Think

How Smart Machines Think PDF Author: Sean Gerrish
Publisher: MIT Press
ISBN: 0262038404
Category : Computers
Languages : en
Pages : 313

Get Book Here

Book Description
Everything you've always wanted to know about self-driving cars, Netflix recommendations, IBM's Watson, and video game-playing computer programs. The future is here: Self-driving cars are on the streets, an algorithm gives you movie and TV recommendations, IBM's Watson triumphed on Jeopardy over puny human brains, computer programs can be trained to play Atari games. But how do all these things work? In this book, Sean Gerrish offers an engaging and accessible overview of the breakthroughs in artificial intelligence and machine learning that have made today's machines so smart. Gerrish outlines some of the key ideas that enable intelligent machines to perceive and interact with the world. He describes the software architecture that allows self-driving cars to stay on the road and to navigate crowded urban environments; the million-dollar Netflix competition for a better recommendation engine (which had an unexpected ending); and how programmers trained computers to perform certain behaviors by offering them treats, as if they were training a dog. He explains how artificial neural networks enable computers to perceive the world—and to play Atari video games better than humans. He explains Watson's famous victory on Jeopardy, and he looks at how computers play games, describing AlphaGo and Deep Blue, which beat reigning world champions at the strategy games of Go and chess. Computers have not yet mastered everything, however; Gerrish outlines the difficulties in creating intelligent agents that can successfully play video games like StarCraft that have evaded solution—at least for now. Gerrish weaves the stories behind these breakthroughs into the narrative, introducing readers to many of the researchers involved, and keeping technical details to a minimum. Science and technology buffs will find this book an essential guide to a future in which machines can outsmart people.

Hands-On Data Science and Python Machine Learning

Hands-On Data Science and Python Machine Learning PDF Author: Frank Kane
Publisher: Packt Publishing Ltd
ISBN: 1787280225
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.

Big Data MBA

Big Data MBA PDF Author: Bill Schmarzo
Publisher: John Wiley & Sons
ISBN: 1119238846
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
Integrate big data into business to drive competitive advantage and sustainable success Big Data MBA brings insight and expertise to leveraging big data in business so you can harness the power of analytics and gain a true business advantage. Based on a practical framework with supporting methodology and hands-on exercises, this book helps identify where and how big data can help you transform your business. You'll learn how to exploit new sources of customer, product, and operational data, coupled with advanced analytics and data science, to optimize key processes, uncover monetization opportunities, and create new sources of competitive differentiation. The discussion includes guidelines for operationalizing analytics, optimal organizational structure, and using analytic insights throughout your organization's user experience to customers and front-end employees alike. You'll learn to “think like a data scientist” as you build upon the decisions your business is trying to make, the hypotheses you need to test, and the predictions you need to produce. Business stakeholders no longer need to relinquish control of data and analytics to IT. In fact, they must champion the organization's data collection and analysis efforts. This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity. Understand where and how to leverage big data Integrate analytics into everyday operations Structure your organization to drive analytic insights Optimize processes, uncover opportunities, and stand out from the rest Help business stakeholders to “think like a data scientist” Understand appropriate business application of different analytic techniques If you want data to transform your business, you need to know how to put it to use. Big Data MBA shows you how to implement big data and analytics to make better decisions.